# -*- coding: utf-8 -*- """ @Time : 2022/8/15 15:20 @Author : @FileName: @Software: @Describe: """ import json import numpy as np import pandas as pd from tqdm import tqdm from bert4keras.backend import keras, K from bert4keras.layers import Loss from bert4keras.models import build_transformer_model from bert4keras.tokenizers import SpTokenizer from bert4keras.optimizers import Adam from bert4keras.snippets import sequence_padding, open from bert4keras.snippets import DataGenerator, AutoRegressiveDecoder from keras.models import Model from rouge import Rouge # pip install rouge from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction class Evaluator(keras.callbacks.Callback): """评估与保存 """ def __init__(self): self.rouge = Rouge() self.smooth = SmoothingFunction().method1 self.best_bleu = 0. # def on_epoch_end(self, epoch, logs=None): # metrics = self.evaluate(valid_data) # 评测模型 # if metrics['bleu'] > self.best_bleu: # self.best_bleu = metrics['bleu'] # model.save_weights('./best_model.weights') # 保存模型 # metrics['best_bleu'] = self.best_bleu # print('valid_data:', metrics) def evaluate(self, data, topk=1): total = 0 rouge_1, rouge_2, rouge_l, bleu = 0, 0, 0, 0 for title, content in tqdm(data): total += 1 title = ' '.join(title).lower() pred_title = ' '.join(autotitle.generate(content, topk=topk)).lower() if pred_title.strip(): scores = self.rouge.get_scores(hyps=pred_title, refs=title) rouge_1 += scores[0]['rouge-1']['f'] rouge_2 += scores[0]['rouge-2']['f'] rouge_l += scores[0]['rouge-l']['f'] bleu += sentence_bleu( references=[title.split(' ')], hypothesis=pred_title.split(' '), smoothing_function=self.smooth ) rouge_1 /= total rouge_2 /= total rouge_l /= total bleu /= total return { 'rouge-1': rouge_1, 'rouge-2': rouge_2, 'rouge-l': rouge_l, 'bleu': bleu, } def evaluate_t(self, data_1, data_2, topk=1): total = 0 rouge_1, rouge_2, rouge_l, bleu = 0, 0, 0, 0 scores = self.rouge.get_scores(hyps=[data_1], refs=[data_2]) rouge_1 += scores[0]['rouge-1']['f'] rouge_2 += scores[0]['rouge-2']['f'] rouge_l += scores[0]['rouge-l']['f'] bleu += sentence_bleu( references=[data_1.split(' ')], hypothesis=data_2.split(' '), smoothing_function=self.smooth ) # rouge_1 /= total # rouge_2 /= total # rouge_l /= total # bleu /= total return [rouge_1, rouge_2, rouge_l, bleu] eval_class = Evaluator() # print(eval_class.evaluate_t("星 辰 的 话","星 辰 的 话 :")) path = "data/700条效果对比.xlsx" path_out = "data/700条效果对比测评结果_5.csv" data = pd.read_excel(path).values.tolist() list_class = [0 for i in range(7)] # print(list_class) data_new = {"rouge_1": list_class.copy(), "rouge_2": list_class.copy(), "rouge_l": list_class.copy(), "bleu": list_class.copy()} total = len(data) print(len(data)) for i in data: dan_list = [i[1], i[2], i[3], i[4], i[5], i[6]] for j in range(len(dan_list)): eval_list = eval_class.evaluate_t(' '.join(dan_list[j]), ' '.join(i[-1])) data_new["rouge_1"][j] += eval_list[0] data_new["rouge_2"][j] += eval_list[1] data_new["rouge_l"][j] += eval_list[2] data_new["bleu"][j] += eval_list[3] ''' 生成文本(t5_未修正数据) 生成文本(unilm未修正数据) 生成文本(unilm修正数据) 生成文本(unilm修正数据_预训练) 生成文本(240w/24H) 生成文本(240W/48H) 生成文本(240W/24H/修) 生成文本(全部数据/72H/修) 生成文本(全部数据/72H/未修) 生成文本(t5修正数据) 生成文本(t5修正数据_190epoch) ''' pd.DataFrame(data_new, index=["simbert_5day", "simsim模型", "sim_attention_dropout04_模型", "t5", "t5_dropout", "小说模型", "yy"]).to_csv( path_out)