import os
# os.environ["TF_KERAS"] = "1"
# os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
# os.environ["CUDA_VISIBLE_DEVICES"] = "1"
from flask import Flask, jsonify
from flask import request
# from linshi import autotitle
import requests
from flask import request
from predict_batch import autotitle


import re
app = Flask(__name__)
app.config["JSON_AS_ASCII"] = False

import logging
pattern = r"[。]"
RE_DIALOG = re.compile(r"\".*?\"|\'.*?\'|“.*?”")
fuhao_end_sentence = ["。",",","?","!","…"]

config = {
    "batch_szie": 1000
}


def get_dialogs_index(line: str):
    """
    获取对话及其索引
    :param line 文本
    :return dialogs 对话内容
            dialogs_index: 对话位置索引
            other_index: 其他内容位置索引
    """
    dialogs = re.finditer(RE_DIALOG, line)
    dialogs_text = re.findall(RE_DIALOG, line)
    dialogs_index = []
    for dialog in dialogs:
        all_ = [i for i in range(dialog.start(), dialog.end())]
        dialogs_index.extend(all_)
    other_index = [i for i in range(len(line)) if i not in dialogs_index]

    return dialogs_text, dialogs_index, other_index


def chulichangju_1(text, snetence_id, chulipangban_return_list, short_num):
    fuhao = [",","?","!","…"]
    text_1 = text[:120]
    text_2 = text[120:]
    text_1_new = ""
    for i in range(len(text_1)-1, -1, -1):
        if text_1[i] in fuhao:
            text_1_new = text_1[:i]
            text_1_new += text_1[i]
            chulipangban_return_list.append([text_1_new, snetence_id, short_num])
            if text_2 != "":
                if i+1 != 120:
                    text_2 = text_1[i+1:] + text_2
            break
        # else:
        #     chulipangban_return_list.append(text_1)
    if text_1_new == "":
        chulipangban_return_list.append([text_1, snetence_id, short_num])
    if text_2 != "":
        short_num += 1
        chulipangban_return_list = chulichangju_1(text_2, snetence_id, chulipangban_return_list, short_num)
    return chulipangban_return_list


def chulipangban_test_1(text, snetence_id):
    sentence_list = text.split("。")
    # sentence_list_new = []
    # for i in sentence_list:
    #     if i != "":
    #         sentence_list_new.append(i)
    # sentence_list = sentence_list_new
    sentence_batch_list = []
    sentence_batch_one = []
    sentence_batch_length = 0
    return_list = []
    for sentence in sentence_list:
        if len(sentence) < 120:
            sentence_batch_length += len(sentence)
            sentence_batch_list.append([sentence, snetence_id, 0])
            # sentence_pre = autotitle.gen_synonyms_short(sentence)
            # return_list.append(sentence_pre)
        else:
            sentence_split_list = chulichangju_1(sentence, snetence_id, [], 0)
            for sentence_short in sentence_split_list:
                sentence_batch_list.append(sentence_short)
    return sentence_batch_list


def paragraph_test_(text:list, text_new:list):

    for i in range(len(text)):
        text = chulipangban_test_1(text, i)
        text = "。".join(text)
        text_new.append(text)

    # text_new_str = "".join(text_new)
    return text_new

def paragraph_test(text:list):

    text_new = []
    for i in range(len(text)):
        text_list = chulipangban_test_1(text[i], i)
        text_new.extend(text_list)

    # text_new_str = "".join(text_new)
    return text_new


def batch_data_process(text_list):
    sentence_batch_length = 0
    sentence_batch_one = []
    sentence_batch_list = []

    for sentence in text_list:
        sentence_batch_length += len(sentence[0])
        sentence_batch_one.append(sentence)
        if sentence_batch_length > 500:
            sentence_batch_length = 0
            sentence_ = sentence_batch_one.pop(-1)
            sentence_batch_list.append(sentence_batch_one)
            sentence_batch_one = []
            sentence_batch_one.append(sentence_)
    sentence_batch_list.append(sentence_batch_one)
    return sentence_batch_list

def batch_predict(batch_data_list):
    '''
    一个bacth数据预测
    @param data_text:
    @return:
    '''
    batch_data_list_new = []
    batch_data_text_list = []
    batch_data_snetence_id_list = []
    for i in batch_data_list:
        batch_data_text_list.append(i[0])
        batch_data_snetence_id_list.append(i[1:])
    # batch_pre_data_list = autotitle.generate_beam_search_batch(batch_data_text_list)
    batch_pre_data_list = batch_data_text_list
    for text,sentence_id in zip(batch_pre_data_list,batch_data_snetence_id_list):
        batch_data_list_new.append([text] + sentence_id)

    return batch_data_list_new


def one_predict(data_text):
    '''
    一个条数据预测
    @param data_text:
    @return:
    '''
    if data_text[0] != "":
        pre_data = autotitle.generate(data_text[0])
    else:
        pre_data = ""
    data_new = [pre_data] + data_text[1:]
    return data_new


def predict_data_post_processing(text_list):
    text_list_sentence = []
    # text_list_sentence.append([text_list[0][0], text_list[0][1]])
    for i in range(len(text_list)):
        if text_list[i][2] != 0:
            text_list_sentence[-1][0] += text_list[i][0]
        else:
            text_list_sentence.append([text_list[i][0], text_list[i][1]])

    return_list = []
    sentence_one = []
    sentence_id = 0
    for i in text_list_sentence:
        if i[1] == sentence_id:
            sentence_one.append(i[0])
        else:
            sentence_id = i[1]
            return_list.append("。".join(sentence_one))
            sentence_one = []
            sentence_one.append(i[0])
    if sentence_one != []:
        return_list.append("。".join(sentence_one))
    return return_list


# def main(text:list):
#     # text_list = paragraph_test(text)
#     # batch_data = batch_data_process(text_list)
#     # text_list = []
#     # for i in batch_data:
#     #     text_list.extend(i)
#     # return_list = predict_data_post_processing(text_list)
#     # return return_list

def main(text: list):
    text_list = paragraph_test(text)
    text_list_new = []
    for i in text_list:
        pre = one_predict(i)
        text_list_new.append(pre)
    return_list = predict_data_post_processing(text_list_new)
    return return_list

@app.route('/droprepeat/', methods=['POST'])
def sentence():
    print(request.remote_addr)
    texts = request.json["texts"]
    text_type = request.json["text_type"]
    print("原始语句" + str(texts))
    # question = question.strip('。、!??')


    if isinstance(texts, list):
        texts_list = []
        y_pred_label_list = []
        position_list = []

        # texts = texts.replace('\'', '\"')
        if texts is None:
            return_text = {"texts": "输入了空值", "probabilities": None, "status_code": False}
            return jsonify(return_text)
        else:
            assert text_type in ['focus', 'chapter']
            if text_type == 'focus':
                texts_list = main(texts)
            if text_type == 'chapter':
                texts_list = main(texts)

            return_text = {"texts": texts_list, "probabilities": None, "status_code": True}
    else:
        return_text = {"texts":"输入格式应该为list", "probabilities": None, "status_code":False}
    return jsonify(return_text)


# @app.route('/chapter/', methods=['POST'])
# def chapter():
#     texts = request.json["texts"]
#
#     print("原始语句" + str(texts))
#     # question = question.strip('。、!??')
#
#     if isinstance(texts, str):
#         texts_list = []
#         y_pred_label_list = []
#         position_list = []
#
#         # texts = texts.replace('\'', '\"')
#         if texts is None:
#             return_text = {"texts": "输入了空值", "probabilities": None, "status_code": False}
#             return jsonify(return_text)
#         else:
#             texts = texts.split("\n")
#             for text in texts:
#                 text = text.strip()
#                 return_str = autotitle.generate_random_shortest(text)
#                 texts_list.append(return_str)
#         texts_str = "\n".join(texts_list)
#         return_text = {"texts": texts_str, "probabilities": None, "status_code": True}
#     else:
#         return_text = {"texts": "输入格式应该为str", "probabilities": None, "status_code": False}
#     return jsonify(return_text)


if __name__ == "__main__":
    fh = logging.FileHandler(mode='a', encoding='utf-8', filename='chitchat.log')
    logging.basicConfig(
        handlers=[fh],
        level=logging.DEBUG,
        format='%(asctime)s - %(levelname)s - %(message)s',
        datefmt='%a, %d %b %Y %H:%M:%S',
    )
    app.run(host="0.0.0.0", port=14000, threaded=True, debug=False)