# -*- coding: utf-8 -*-

"""
@Time    :  2023/1/31 19:02
@Author  : 
@FileName: 
@Software: 
@Describe:
"""
import os
# os.environ["TF_KERAS"] = "1"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import json
import numpy as np
from bert4keras.backend import keras, set_gelu
from bert4keras.tokenizers import Tokenizer, load_vocab
from bert4keras.models import build_transformer_model
from bert4keras.optimizers import Adam, extend_with_piecewise_linear_lr
from bert4keras.snippets import sequence_padding, DataGenerator
from bert4keras.snippets import open
from keras.layers import Lambda, Dense
import tensorflow as tf
from keras.backend import set_session
from sklearn.metrics.pairwise import cosine_similarity
from rouge import Rouge  # pip install rouge
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
from tqdm import tqdm
import jieba
from gensim.models import KeyedVectors, word2vec, Word2Vec
import random

config = tf.ConfigProto()
config.gpu_options.allow_growth = True
set_session(tf.Session(config=config)) # 此处不同

class Word2vecModel:
    def __init__(self):
        self.path = "E:\pycharm_workspace\查重分析\word2vec_model\\word2vec_add_new_18.model"
        self.model = Word2Vec.load(self.path)

    def word2vec_res(self,seg_0_list, seg_1_list):
        sentence_0_list = []
        sentence_1_list = []
        for i in seg_0_list:
            a = self.model.wv[i]
            sentence_0_list.append(a)

        for i in seg_1_list:
            a = self.model.wv[i]
            sentence_1_list.append(a)

        return sentence_0_list, sentence_1_list

class Evaluator(keras.callbacks.Callback):
    """评估与保存
    """

    def __init__(self):
        self.rouge = Rouge()
        self.smooth = SmoothingFunction().method1
        self.best_bleu = 0.

    # def on_epoch_end(self, epoch, logs=None):
    #     metrics = self.evaluate(valid_data)  # 评测模型
    #     if metrics['bleu'] > self.best_bleu:
    #         self.best_bleu = metrics['bleu']
    #         model.save_weights('./best_model.weights')  # 保存模型
    #     metrics['best_bleu'] = self.best_bleu
    #     print('valid_data:', metrics)


    def evaluate_t(self, data_1, data_2, topk=1):
        total = 0
        rouge_1, rouge_2, rouge_l, bleu = 0, 0, 0, 0

        scores = self.rouge.get_scores(hyps=[data_1], refs=[data_2])
        rouge_1 += scores[0]['rouge-1']['f']
        rouge_2 += scores[0]['rouge-2']['f']
        rouge_l += scores[0]['rouge-l']['f']
        bleu += sentence_bleu(
            references=[data_1.split(' ')],
            hypothesis=data_2.split(' '),
            smoothing_function=self.smooth
        )
        # rouge_1 /= total
        # rouge_2 /= total
        # rouge_l /= total
        # bleu /= total
        return [rouge_1, rouge_2, rouge_l, bleu]

class bertModel:
    def __init__(self):
        self.config_path = '../chinese_roberta_wwm_ext_L-12_H-768_A-12/bert_config.json'
        self.checkpoint_path = '../chinese_roberta_wwm_ext_L-12_H-768_A-12/bert_model.ckpt'
        self.dict_path = '../chinese_roberta_wwm_ext_L-12_H-768_A-12/vocab.txt'
        self.token_dict, self.keep_tokens = load_vocab(
            dict_path=self.dict_path,
            simplified=True,
            startswith=['[PAD]', '[UNK]', '[CLS]', '[SEP]'],
        )
        self.tokenizer = Tokenizer(self.token_dict, do_lower_case=True)
        self.buildmodel()


    def buildmodel(self):
        bert = build_transformer_model(
            config_path=self.config_path,
            checkpoint_path=self.checkpoint_path,
            return_keras_model=False,
        )

        output = Lambda(lambda x: x[:, 0], name='CLS-token')(bert.model.output)
        self.model = keras.models.Model(bert.model.input, output)
        self.model.summary()

    def predict(self,text):
        batch_token_ids, batch_segment_ids = [], []
        token_ids, segment_ids = self.tokenizer.encode(text, maxlen=256)
        batch_token_ids.append(token_ids)
        batch_segment_ids.append(segment_ids)
        return self.model.predict([batch_token_ids, batch_segment_ids])


def simbert(data_1, data_2):
    pass

def word2vec():
    pass

def bleu():
    pass


if __name__ == '__main__':
    file = "../data/train_yy_1.txt"
    model = bertModel()
    eval_class = Evaluator()
    # word2vecmodel = Word2vecModel()
    try:
        with open(file, 'r', encoding="utf-8") as f:
            lines = [x.strip() for x in f if x.strip() != '']
    except:
        with open(file, 'r', encoding="gbk") as f:
            lines = [x.strip() for x in f if x.strip() != '']

    bertsim_list = []
    bleusim_list = []
    word2vecsim_list = []
    data_train_text = []

    random.shuffle(lines)
    print(len(lines))
    for txt in tqdm(lines):
        text = txt.split('\t')
        if len(text) == 3:
            data_1 = text[0]
            data_2 = text[2]
            y1 = model.predict(data_1)[0]
            y2 = model.predict(data_2)[0]
            cos_sim = cosine_similarity(y1.reshape(1, -1), y2.reshape(1, -1))
            bertsim_list.append(cos_sim[0][0])
            bertsim_value = cos_sim[0][0]

            eval_list = eval_class.evaluate_t(' '.join(data_1), ' '.join(data_2))
            bleusim_list.append(eval_list[3])
            bleusim_value = eval_list[3]

            if bertsim_value <= 0.94 and bleusim_value <= 0.4:
                data_train_text.append("\t".join([data_1, "to", data_2]))



            # eval_list = eval_class.evaluate_t(' '.join(data_1), ' '.join(data_2))
            # bleusim_list.append(eval_list[3])

            # word2vec
            # seg_0_list = jieba.cut(data_1, cut_all=False)
            # seg_1_list = jieba.cut(data_2, cut_all=False)
            # seg_0_list = [char for char in seg_0_list]
            # seg_1_list = [char for char in seg_1_list]
            #
            # sentence_0_list, sentence_1_list = word2vecmodel.word2vec_res(seg_0_list, seg_1_list)
            # sentence_0_result = np.array(sentence_0_list)
            # sentence_1_result = np.array(sentence_1_list)
            # sentence_0_array = sentence_0_result.sum(axis=0)
            # sentence_1_array = sentence_1_result.sum(axis=0)
            # print(sentence_1_array)
            # print(sentence_0_array)
            # cos_sim = cosine_similarity(sentence_0_array.reshape(1, -1), sentence_1_array.reshape(1, -1))
            # word2vecsim_list.append(cos_sim[0][0])

    # bertsim_list = sorted(bertsim_list)
    # zong_num = len(bertsim_list)
    # print(bertsim_list)
    # print(bertsim_list[int(zong_num/2)])
    # print(sum(bertsim_list)/zong_num)

    # bleusim_list = sorted(bleusim_list)
    # zong_num = len(bleusim_list)
    # print(bleusim_list)
    # print(bleusim_list[int(zong_num / 2)])
    # print(sum(bleusim_list) / zong_num)

    fileName = 'train_yy_1_sim_09.txt'
    with open(fileName, 'w', encoding='utf-8') as file:
        for i in data_train_text:
            file.write(str(i) + '\n')
        file.close()