#! -*- coding: utf-8 -*-

import os
os.environ["TF_KERAS"] = "1"
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
import glob
from numpy import random
random.seed(1001)
from tqdm import tqdm
import numpy as np
import pandas as pd
from bert4keras.backend import keras, K
from bert4keras.layers import Loss
from bert4keras.models import build_transformer_model
from bert4keras.tokenizers import Tokenizer, load_vocab
from bert4keras.optimizers import Adam
from bert4keras.snippets import sequence_padding, open
from bert4keras.snippets import DataGenerator, AutoRegressiveDecoder
from keras.models import Model
import tensorflow as tf


from keras.backend import set_session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
set_session(tf.Session(config=config)) # 此处不同
global graph
graph = tf.get_default_graph()
sess = tf.Session(graph=graph)
set_session(sess)

# global graph,model
# graph = tf.get_default_graph()
# sess = tf.Session(graph=graph)
# K.set_session(sess)


# 基本参数

class GenerateModel(object):
    def __init__(self):

        self.epoch_acc_vel = 0
        self.config_path = r'./chinese_roberta_wwm_ext_L-12_H-768_A-12/bert_config.json'
        self.checkpoint_path = r'./chinese_roberta_wwm_ext_L-12_H-768_A-12/bert_model.ckpt'
        self.dict_path = r'./chinese_roberta_wwm_ext_L-12_H-768_A-12/vocab.txt'
        self.maxlen = 120

    def device_setup(self):
        token_dict, keep_tokens = load_vocab(
            dict_path=self.dict_path,
            simplified=True,
            startswith=['[PAD]', '[UNK]', '[CLS]', '[SEP]'],
        )
        tokenizer = Tokenizer(token_dict, do_lower_case=True)

        model = build_transformer_model(
            self.config_path,
            self.checkpoint_path,
            application='unilm',
            keep_tokens=keep_tokens,  # 只保留keep_tokens中的字,精简原字表
        )

        # output = CrossEntropy(2)(model.inputs + model.outputs)
        #
        # model = Model(model.inputs, output)
        model = Model(model.inputs, model.outputs)
        path_model = './output_quan/best_model_20wan_1.weights'
        model.load_weights(path_model)

        return model, tokenizer


class CrossEntropy(Loss):
    """交叉熵作为loss,并mask掉输入部分
    """
    def compute_loss(self, inputs, mask=None):
        y_true, y_mask, y_pred = inputs
        y_true = y_true[:, 1:]  # 目标token_ids
        y_mask = y_mask[:, 1:]  # segment_ids,刚好指示了要预测的部分
        y_pred = y_pred[:, :-1]  # 预测序列,错开一位
        loss = K.sparse_categorical_crossentropy(y_true, y_pred)
        loss = K.sum(loss * y_mask) / K.sum(y_mask)
        return loss

class AutoTitle(AutoRegressiveDecoder):
    """seq2seq解码器
    """
    def __init__(self, model, tokenizer, start_id, end_id, maxlen, minlen=1):
        super(AutoTitle, self).__init__(start_id, end_id, maxlen, minlen)
        self.model = model
        self.tokenizer = tokenizer
        self.start_id = start_id
        self.end_id = end_id
        self.minlen = minlen
        self.models = {}
        if start_id is None:
            self.first_output_ids = np.empty((1, 0), dtype=int)
        else:
            self.first_output_ids = np.array([[self.start_id]])

    def data_generator(self, inputs, output_ids):
        batch_token_ids, batch_segment_ids = [], []
        if output_ids == []:
            for txt in inputs:
                token_ids, segment_ids = self.tokenizer.encode(txt, maxlen=120)
                batch_token_ids.append(token_ids)
                batch_segment_ids.append(segment_ids)
        else:
            for txt,output_id in zip(inputs, output_ids):
                token_ids, segment_ids = self.tokenizer.encode(txt, output_id)
                batch_token_ids.append(token_ids[:-1])
                batch_segment_ids.append(segment_ids[:-1])

        batch_token_ids = sequence_padding(batch_token_ids)
        batch_segment_ids = sequence_padding(batch_segment_ids)
        return batch_token_ids, batch_segment_ids


    def random_sample_batch(
        self,
        inputs,
        n,
        topk=None,
        topp=None,
        states=None,
        temperature=1,
        min_ends=1
    ):
        """随机采样n个结果
        说明:非None的topk表示每一步只从概率最高的topk个中采样;而非None的topp
             表示每一步只从概率最高的且概率之和刚好达到topp的若干个token中采样。
        返回:n个解码序列组成的list。
        """
        inputs = [np.array([i for j in i]) for i in inputs]
        output_ids = self.first_output_ids
        results = []
        for step in range(self.maxlen):
            probas, states = self.predict(
                inputs, output_ids, states, temperature, 'probas'
            )  # 计算当前概率
            probas /= probas.sum(axis=1, keepdims=True)  # 确保归一化
            if step == 0:  # 第1步预测后将结果重复n次
                probas = np.repeat(probas, n, axis=0)
                inputs = [np.repeat(i, n, axis=0) for i in inputs]
                output_ids = np.repeat(output_ids, n, axis=0)
            if topk is not None:
                k_indices = probas.argpartition(-topk,
                                                axis=1)[:, -topk:]  # 仅保留topk
                probas = np.take_along_axis(probas, k_indices, axis=1)  # topk概率
                probas /= probas.sum(axis=1, keepdims=True)  # 重新归一化
            if topp is not None:
                p_indices = probas.argsort(axis=1)[:, ::-1]  # 从高到低排序
                probas = np.take_along_axis(probas, p_indices, axis=1)  # 排序概率
                cumsum_probas = np.cumsum(probas, axis=1)  # 累积概率
                flag = np.roll(cumsum_probas >= topp, 1, axis=1)  # 标记超过topp的部分
                flag[:, 0] = False  # 结合上面的np.roll,实现平移一位的效果
                probas[flag] = 0  # 后面的全部置零
                probas /= probas.sum(axis=1, keepdims=True)  # 重新归一化
            sample_func = lambda p: np.random.choice(len(p), p=p)  # 按概率采样函数
            sample_ids = np.apply_along_axis(sample_func, 1, probas)  # 执行采样
            sample_ids = sample_ids.reshape((-1, 1))  # 对齐形状
            if topp is not None:
                sample_ids = np.take_along_axis(
                    p_indices, sample_ids, axis=1
                )  # 对齐原id
            if topk is not None:
                sample_ids = np.take_along_axis(
                    k_indices, sample_ids, axis=1
                )  # 对齐原id
            output_ids = np.concatenate([output_ids, sample_ids], 1)  # 更新输出
            is_end = output_ids[:, -1] == self.end_id  # 标记是否以end标记结束
            end_counts = (output_ids == self.end_id).sum(1)  # 统计出现的end标记
            if output_ids.shape[1] >= self.minlen:  # 最短长度判断
                flag = is_end & (end_counts >= min_ends)  # 标记已完成序列
                if flag.any():  # 如果有已完成的
                    for ids in output_ids[flag]:  # 存好已完成序列
                        results.append(ids)
                    flag = (flag == False)  # 标记未完成序列
                    inputs = [i[flag] for i in inputs]  # 只保留未完成部分输入
                    output_ids = output_ids[flag]  # 只保留未完成部分候选集
                    end_counts = end_counts[flag]  # 只保留未完成部分end计数
                    if len(output_ids) == 0:
                        break
        # 如果还有未完成序列,直接放入结果
        for ids in output_ids:
            results.append(ids)
        # 返回结果
        return results

    def random_sample_and_beam_search(
        self,
        inputs,
        n,
        topk=None,
        topp=None,
        states=None,
        temperature=1,
        min_ends=1
    ):
        """随机采样n个结果
        说明:非None的topk表示每一步只从概率最高的topk个中采样;而非None的topp
             表示每一步只从概率最高的且概率之和刚好达到topp的若干个token中采样。
        返回:n个解码序列组成的list。
        """
        whether_end_b = False
        results_r = []
        results_b = []
        # index_r = [i for i in range(n)]
        # index_b = [i for i in range(topk)]
        index_r = np.arange(n)
        index_b = np.arange(topk)
        inputs = [np.array([i]) for i in inputs]
        output_ids, output_scores = self.first_output_ids, np.zeros(1)
        results = []
        for step in range(self.maxlen):
            beam_n = len(index_b)
            probas, states = self.predict(
                inputs, output_ids, states, temperature, 'probas'
            )  # 计算当前概率
            probas = probas / probas.sum(axis=1, keepdims=True)  # 确保归一化
            if step == 0:  # 第1步预测后将结果重复n次
                probas = np.repeat(probas, n + topk, axis=0)
                inputs_r = [np.repeat(i, n, axis=0) for i in inputs]
                output_ids = np.repeat(output_ids, n + topk, axis=0)
                inputs_b = [np.repeat(i, topk, axis=0) for i in inputs]
                probas_b = probas[0, :]
                probas_r = probas[:-beam_n, :]
                output_ids_r = output_ids[:-beam_n, :]
                output_ids_b = output_ids[-beam_n:, :]
            else:
                probas_b = probas[-beam_n:, :]
                if whether_end_b == False:
                    inputs_r = [i[:-beam_n, :] for i in inputs]
                    inputs_b = [i[-beam_n:, :] for i in inputs]
                    probas_r = probas[:-beam_n, :]
                    output_ids_r = output_ids[:-beam_n, :]
                    output_ids_b = output_ids[-beam_n:, :]
                else:
                    inputs_r = inputs
                    probas_r = probas
                    output_ids_r = output_ids

            k_indices = probas_r.argpartition(-topk,
                                            axis=1)[:, -topk:]  # 仅保留topk
            probas_r = np.take_along_axis(probas_r, k_indices, axis=1)  # topk概率
            probas_r /= probas_r.sum(axis=1, keepdims=True)  # 重新归一化

            if whether_end_b == False:
                scores = output_scores.reshape((-1, 1)) + probas_b  # 综合累积得分
                indices = scores.argpartition(-topk, axis=None)[-topk:]  # 仅保留topk
                indices_1 = indices // scores.shape[1]  # 行索引
                indices_2 = (indices % scores.shape[1]).reshape((-1, 1))  # 列索引
                output_ids_b = np.concatenate([output_ids_b[indices_1], indices_2],
                                                1)  # 更新输出

                output_scores = np.take_along_axis(
                    scores, indices, axis=None
                )  # 更新得分
            sample_func = lambda p: np.random.choice(len(p), p=p)  # 按概率采样函数

            sample_ids = np.apply_along_axis(sample_func, 1, probas_r)  # 执行采样

            sample_ids = sample_ids.reshape((-1, 1))  # 对齐形状
            if topk is not None:
                sample_ids = np.take_along_axis(
                    k_indices, sample_ids, axis=1
                )  # 对齐原id
            output_ids_r = np.concatenate([output_ids_r, sample_ids], 1)  # 更新输出

            # output_ids = np.concatenate([output_ids_r, output_ids_b], 0)
            if whether_end_b == False:
                is_end_r = output_ids_r[:, -1] == self.end_id  # 标记是否以end标记结束
                is_end_b = output_ids_b[:, -1] == self.end_id  # 标记是否以end标记结束
                end_counts_r = (output_ids_r == self.end_id).sum(1)  # 统计出现的end标记
                end_counts_b = (output_ids_b == self.end_id).sum(1)  # 统计出现的end标记
            else:
                is_end_r = output_ids_r[:, -1] == self.end_id
                end_counts_r = (output_ids_r == self.end_id).sum(1)

            # random_serach
            if output_ids_r.shape[1] >= self.minlen:  # 最短长度判断
                flag = is_end_r & (end_counts_r >= min_ends)  # 标记已完成序列
                if flag.any():  # 如果有已完成的
                    for ids in output_ids_r[flag]:  # 存好已完成序列
                        results_r.append(ids)
                    flag = (flag == False)  # 标记未完成序列
                    index_r = index_r[flag]

                    inputs_r = [i[flag] for i in inputs_r]  # 只保留未完成部分输入
                    output_ids_r = output_ids_r[flag]  # 只保留未完成部分候选集
                    end_counts_r = end_counts_r[flag]  # 只保留未完成部分end计数

            # beam_serach
            if whether_end_b == False:
                if output_ids_b.shape[1] >= self.minlen:  # 最短长度判断
                    best = output_scores.argmax()  # 得分最大的那个
                    if is_end_b[best] and end_counts_b[best] >= min_ends:  # 如果已经终止
                        results_b.append(output_ids_b[best])  # 直接输出
                        whether_end_b = True
                    else:  # 否则,只保留未完成部分
                        flag_b = ~is_end_b | (end_counts_b < min_ends)  # 标记未完成序列
                        if not flag_b.all():  # 如果有已完成的
                            index_b = index_b[flag_b]
                            inputs_b = [i[flag_b] for i in inputs_b]  # 扔掉已完成序列
                            output_ids_b = output_ids_b[flag_b]  # 扔掉已完成序列
                            output_scores = output_scores[flag_b]  # 扔掉已完成序列
                            end_counts_b = end_counts_b[flag_b]  # 扔掉已完成end计数
                            topk = flag_b.sum()  # topk相应变化

            if whether_end_b == False and len(output_ids_r) != 0:
                token_r = inputs_r[0]
                sample_ids_r = inputs_r[1]
                token_b = inputs_b[0]
                sample_ids_b = inputs_b[1]
                token = np.concatenate([token_r,token_b],0)
                sample_ids = np.concatenate([sample_ids_r,sample_ids_b],0)
                inputs = [token,sample_ids]
                output_ids = np.concatenate([output_ids_r, output_ids_b], 0)
            elif whether_end_b == True and len(output_ids_r) != 0:
                inputs = inputs_r
                output_ids = output_ids_r
            elif whether_end_b == False and len(output_ids_r) == 0:
                inputs = inputs_b
                output_ids = output_ids_b
            else:
                break


        # 如果还有未完成序列,直接放入结果
        for ids in output_ids:
            results.append(ids)
        # 返回结果
        return results_r, results_b

    def random_sample_and_beam_search_batch(
        self,
        inputs,
        n,
        topk=None,
        topp=None,
        states=None,
        temperature=1,
        min_ends=1
    ):
        """随机采样n个结果
        说明:非None的topk表示每一步只从概率最高的topk个中采样;而非None的topp
             表示每一步只从概率最高的且概率之和刚好达到topp的若干个token中采样。
        返回:n个解码序列组成的list。
        """
        whether_end_b = False
        results_r = []
        results_b = []
        index_r = np.arange(n)
        index_b = np.arange(topk)
        inputs = [np.array([i]) for i in inputs]
        output_ids, output_scores = self.first_output_ids, np.zeros(1)
        results = []
        for step in range(self.maxlen):
            beam_n = len(index_b)
            probas, states = self.predict(
                inputs, output_ids, states, temperature, 'probas'
            )  # 计算当前概率
            probas = probas / probas.sum(axis=1, keepdims=True)  # 确保归一化
            if step == 0:  # 第1步预测后将结果重复n次
                probas = np.repeat(probas, n + topk, axis=0)
                inputs_r = [np.repeat(i, n, axis=0) for i in inputs]
                output_ids = np.repeat(output_ids, n + topk, axis=0)
                inputs_b = [np.repeat(i, topk, axis=0) for i in inputs]
                probas_b = probas[0, :]
                probas_r = probas[:-beam_n, :]
                output_ids_r = output_ids[:-beam_n, :]
                output_ids_b = output_ids[-beam_n:, :]
            else:
                probas_b = probas[-beam_n:, :]
                if whether_end_b == False:
                    inputs_r = [i[:-beam_n, :] for i in inputs]
                    inputs_b = [i[-beam_n:, :] for i in inputs]
                    probas_r = probas[:-beam_n, :]
                    output_ids_r = output_ids[:-beam_n, :]
                    output_ids_b = output_ids[-beam_n:, :]
                else:
                    inputs_r = inputs
                    probas_r = probas
                    output_ids_r = output_ids

            k_indices = probas_r.argpartition(-topk,
                                            axis=1)[:, -topk:]  # 仅保留topk
            probas_r = np.take_along_axis(probas_r, k_indices, axis=1)  # topk概率
            probas_r /= probas_r.sum(axis=1, keepdims=True)  # 重新归一化

            if whether_end_b == False:
                scores = output_scores.reshape((-1, 1)) + probas_b  # 综合累积得分
                indices = scores.argpartition(-topk, axis=None)[-topk:]  # 仅保留topk
                indices_1 = indices // scores.shape[1]  # 行索引
                indices_2 = (indices % scores.shape[1]).reshape((-1, 1))  # 列索引
                output_ids_b = np.concatenate([output_ids_b[indices_1], indices_2],
                                                1)  # 更新输出

                output_scores = np.take_along_axis(
                    scores, indices, axis=None
                )  # 更新得分
            sample_func = lambda p: np.random.choice(len(p), p=p)  # 按概率采样函数

            sample_ids = np.apply_along_axis(sample_func, 1, probas_r)  # 执行采样

            sample_ids = sample_ids.reshape((-1, 1))  # 对齐形状
            if topk is not None:
                sample_ids = np.take_along_axis(
                    k_indices, sample_ids, axis=1
                )  # 对齐原id
            output_ids_r = np.concatenate([output_ids_r, sample_ids], 1)  # 更新输出

            # output_ids = np.concatenate([output_ids_r, output_ids_b], 0)
            if whether_end_b == False:
                is_end_r = output_ids_r[:, -1] == self.end_id  # 标记是否以end标记结束
                is_end_b = output_ids_b[:, -1] == self.end_id  # 标记是否以end标记结束
                end_counts_r = (output_ids_r == self.end_id).sum(1)  # 统计出现的end标记
                end_counts_b = (output_ids_b == self.end_id).sum(1)  # 统计出现的end标记
            else:
                is_end_r = output_ids_r[:, -1] == self.end_id
                end_counts_r = (output_ids_r == self.end_id).sum(1)

            # random_serach
            if output_ids_r.shape[1] >= self.minlen:  # 最短长度判断
                flag = is_end_r & (end_counts_r >= min_ends)  # 标记已完成序列
                if flag.any():  # 如果有已完成的
                    for ids in output_ids_r[flag]:  # 存好已完成序列
                        results_r.append(ids)
                    flag = (flag == False)  # 标记未完成序列
                    index_r = index_r[flag]

                    inputs_r = [i[flag] for i in inputs_r]  # 只保留未完成部分输入
                    output_ids_r = output_ids_r[flag]  # 只保留未完成部分候选集
                    end_counts_r = end_counts_r[flag]  # 只保留未完成部分end计数

            # beam_serach
            if whether_end_b == False:
                if output_ids_b.shape[1] >= self.minlen:  # 最短长度判断
                    best = output_scores.argmax()  # 得分最大的那个
                    if is_end_b[best] and end_counts_b[best] >= min_ends:  # 如果已经终止
                        results_b.append(output_ids_b[best])  # 直接输出
                        whether_end_b = True
                    else:  # 否则,只保留未完成部分
                        flag_b = ~is_end_b | (end_counts_b < min_ends)  # 标记未完成序列
                        if not flag_b.all():  # 如果有已完成的
                            index_b = index_b[flag_b]
                            inputs_b = [i[flag_b] for i in inputs_b]  # 扔掉已完成序列
                            output_ids_b = output_ids_b[flag_b]  # 扔掉已完成序列
                            output_scores = output_scores[flag_b]  # 扔掉已完成序列
                            end_counts_b = end_counts_b[flag_b]  # 扔掉已完成end计数
                            topk = flag_b.sum()  # topk相应变化

            if whether_end_b == False and len(output_ids_r) != 0:
                token_r = inputs_r[0]
                sample_ids_r = inputs_r[1]
                token_b = inputs_b[0]
                sample_ids_b = inputs_b[1]
                token = np.concatenate([token_r,token_b],0)
                sample_ids = np.concatenate([sample_ids_r,sample_ids_b],0)
                inputs = [token,sample_ids]
                output_ids = np.concatenate([output_ids_r, output_ids_b], 0)
            elif whether_end_b == True and len(output_ids_r) != 0:
                inputs = inputs_r
                output_ids = output_ids_r
            elif whether_end_b == False and len(output_ids_r) == 0:
                inputs = inputs_b
                output_ids = output_ids_b
            else:
                break


        # 如果还有未完成序列,直接放入结果
        for ids in output_ids:
            results.append(ids)
        # 返回结果
        return results_r, results_b

    def random_sample_seed(
        self,
        inputs,
        n,
        topk=None,
        topp=None,
        states=None,
        temperature=1,
        min_ends=1
    ):
        """随机采样n个结果
        说明:非None的topk表示每一步只从概率最高的topk个中采样;而非None的topp
             表示每一步只从概率最高的且概率之和刚好达到topp的若干个token中采样。
        返回:n个解码序列组成的list。
        """
        inputs = [np.array([i]) for i in inputs]
        output_ids = self.first_output_ids
        results = []
        for step in range(self.maxlen):
            probas, states = self.predict(
                inputs, output_ids, states, temperature, 'probas'
            )  # 计算当前概率
            probas /= probas.sum(axis=1, keepdims=True)  # 确保归一化
            if step == 0:  # 第1步预测后将结果重复n次
                probas = np.repeat(probas, n, axis=0)
                inputs = [np.repeat(i, n, axis=0) for i in inputs]
                output_ids = np.repeat(output_ids, n, axis=0)
            if topk is not None:
                k_indices = probas.argpartition(-topk,
                                                axis=1)[:, -topk:]  # 仅保留topk
                probas = np.take_along_axis(probas, k_indices, axis=1)  # topk概率
                probas /= probas.sum(axis=1, keepdims=True)  # 重新归一化
            if topp is not None:
                p_indices = probas.argsort(axis=1)[:, ::-1]  # 从高到低排序
                probas = np.take_along_axis(probas, p_indices, axis=1)  # 排序概率
                cumsum_probas = np.cumsum(probas, axis=1)  # 累积概率
                flag = np.roll(cumsum_probas >= topp, 1, axis=1)  # 标记超过topp的部分
                flag[:, 0] = False  # 结合上面的np.roll,实现平移一位的效果
                probas[flag] = 0  # 后面的全部置零
                probas /= probas.sum(axis=1, keepdims=True)  # 重新归一化
            random.seed(1001)
            sample_func = lambda p: np.random.choice(len(p), p=p, )  # 按概率采样函数
            sample_ids = np.apply_along_axis(sample_func, 1, probas)  # 执行采样
            sample_ids = sample_ids.reshape((-1, 1))  # 对齐形状
            if topp is not None:
                sample_ids = np.take_along_axis(
                    p_indices, sample_ids, axis=1
                )  # 对齐原id
            if topk is not None:
                sample_ids = np.take_along_axis(
                    k_indices, sample_ids, axis=1
                )  # 对齐原id
            output_ids = np.concatenate([output_ids, sample_ids], 1)  # 更新输出
            is_end = output_ids[:, -1] == self.end_id  # 标记是否以end标记结束
            end_counts = (output_ids == self.end_id).sum(1)  # 统计出现的end标记
            if output_ids.shape[1] >= self.minlen:  # 最短长度判断
                flag = is_end & (end_counts >= min_ends)  # 标记已完成序列
                if flag.any():  # 如果有已完成的
                    for ids in output_ids[flag]:  # 存好已完成序列
                        results.append(ids)
                    flag = (flag == False)  # 标记未完成序列
                    inputs = [i[flag] for i in inputs]  # 只保留未完成部分输入
                    output_ids = output_ids[flag]  # 只保留未完成部分候选集
                    end_counts = end_counts[flag]  # 只保留未完成部分end计数
                    if len(output_ids) == 0:
                        break
        # 如果还有未完成序列,直接放入结果
        for ids in output_ids:
            results.append(ids)
        # 返回结果
        return results

    # def beam_search_batch(
    #     self,
    #     inputs_str,
    #     topk = 1
    #     temperature=1,
    #     min_ends=1
    # ):
    #     """随机采样n个结果
    #     说明:非None的topk表示每一步只从概率最高的topk个中采样;而非None的topp
    #          表示每一步只从概率最高的且概率之和刚好达到topp的若干个token中采样。
    #     返回:n个解码序列组成的list。
    #     """
    #     output_str = []
    #     # token_ids, segment_ids = self.data_generator(inputs, output_ids)
    #     batch_nums = len(inputs_str)
    #     output_ids = self.first_output_ids_batch = np.empty((batch_nums, 0), dtype=int)
    #
    #     results = [[] for i in range(batch_nums)]
    #     index_data = [i for i in range(batch_nums)]
    #     for step in range(self.maxlen):
    #
    #         token_ids, segment_ids = self.data_generator(inputs_str, output_str)
    #         inputs = [token_ids, segment_ids]
    #         probas = self.predict_batch(
    #             inputs
    #         )  # 计算当前概率
    #         # probas /= probas.sum(axis=1, keepdims=True)  # 确保归一化
    #
    #         probas_new = []
    #         probas_bool = np.array(token_ids, dtype=bool)
    #         # np.array(np.where(probas_bool == True))
    #         for i,sentence in enumerate(probas_bool):
    #             lie = np.array(np.where(sentence == True))[0]
    #             probas_new.append(probas[i,lie[-1]])
    #         probas = np.array(probas_new)
    #         k_indices = np.argmax(probas,axis=1)
    #         k_indices = k_indices.reshape(-1,1)
    #
    #         sample_ids = k_indices
    #         output_ids = np.concatenate([output_ids, sample_ids], 1)  # 更新输出
    #         is_end = output_ids[:, -1] == self.end_id  # 标记是否以end标记结束
    #         end_counts = (output_ids == self.end_id).sum(1)  # 统计出现的end标记
    #         if output_ids.shape[1] >= self.minlen:  # 最短长度判断
    #             flag = is_end & (end_counts >= min_ends)  # 标记已完成序列
    #             if flag.any():  # 如果有已完成的
    #                 index = np.array(np.where(flag == True))[0]
    #                 pop_index = []
    #                 for i in index:
    #                     results[index_data[i]] = output_ids[i]
    #                     pop_index.append(index_data[i])
    #                 for i in pop_index:
    #                     index_data.remove(i)
    #                 # for ids in output_ids[flag]:  # 存好已完成序列
    #                 #     results.append(ids)
    #                 flag = (flag == False)  # 标记未完成序列
    #                 inputs_str = [inputs_str[i] for i in index_data]  # 只保留未完成部分输入
    #                 output_ids = output_ids[flag]  # 只保留未完成部分候选集
    #                 if len(output_ids) == 0:
    #                     break
    #                 else:
    #                     output_str = [tokenizer.decode(ids) for ids in output_ids]
    #             else:
    #                 output_str = [tokenizer.decode(ids) for ids in output_ids]
    #     # 如果还有未完成序列,直接放入结果
    #     # for ids in output_ids:
    #     #     results.append(ids)
    #     # 返回结果
    #     return results

    def random_sample_topp_gentle(
        self,
        inputs,
        n,
        topk=None,
        topp=None,
        states=None,
        temperature=1,
        min_ends=1
    ):
        """随机采样n个结果
        说明:非None的topk表示每一步只从概率最高的topk个中采样;而非None的topp
             表示每一步只从概率最高的且概率之和刚好达到topp的若干个token中采样。
        返回:n个解码序列组成的list。
        """
        inputs = [np.array([i]) for i in inputs]
        output_ids = self.first_output_ids
        results = []
        for step in range(self.maxlen):
            probas, states = self.predict(
                inputs, output_ids, states, temperature, 'probas'
            )  # 计算当前概率
            probas /= probas.sum(axis=1, keepdims=True)  # 确保归一化
            if step == 0:  # 第1步预测后将结果重复n次
                # TODO
                probas = np.repeat(probas, n, axis=0)
                inputs = [np.repeat(i, n, axis=0) for i in inputs]
                output_ids = np.repeat(output_ids, n, axis=0)
            if topk is not None:
                k_indices = probas.argpartition(-topk,
                                                axis=1)[:, -topk:]  # 仅保留topk
                probas = np.take_along_axis(probas, k_indices, axis=1)  # topk概率
                probas /= probas.sum(axis=1, keepdims=True)  # 重新归一化
            if topp is not None:
                p_indices = probas.argsort(axis=1)[:, ::-1]  # 从高到低排序
                probas = np.take_along_axis(probas, p_indices, axis=1)  # 排序概率
                cumsum_probas = np.cumsum(probas, axis=1)  # 累积概率
                flag = np.roll(cumsum_probas >= topp, 1, axis=1)  # 标记超过topp的部分
                flag[:, 0] = False  # 结合上面的np.roll,实现平移一位的效果
                probas[flag] = 0  # 后面的全部置零
                probas /= probas.sum(axis=1, keepdims=True)  # 重新归一化
            # me = np.mean(n)
            # c = n + (2 * me)
            # c /= c.sum()
            sample_func = lambda p: np.random.choice(len(p), p=p)  # 按概率采样函数
            sample_ids = np.apply_along_axis(sample_func, 1, probas)  # 执行采样
            sample_ids = sample_ids.reshape((-1, 1))  # 对齐形状
            if topp is not None:
                sample_ids = np.take_along_axis(
                    p_indices, sample_ids, axis=1
                )  # 对齐原id
            if topk is not None:
                sample_ids = np.take_along_axis(
                    k_indices, sample_ids, axis=1
                )  # 对齐原id
            output_ids = np.concatenate([output_ids, sample_ids], 1)  # 更新输出
            is_end = output_ids[:, -1] == self.end_id  # 标记是否以end标记结束
            end_counts = (output_ids == self.end_id).sum(1)  # 统计出现的end标记
            if output_ids.shape[1] >= self.minlen:  # 最短长度判断
                flag = is_end & (end_counts >= min_ends)  # 标记已完成序列
                if flag.any():  # 如果有已完成的
                    for ids in output_ids[flag]:  # 存好已完成序列
                        results.append(ids)
                    flag = (flag == False)  # 标记未完成序列
                    inputs = [i[flag] for i in inputs]  # 只保留未完成部分输入
                    output_ids = output_ids[flag]  # 只保留未完成部分候选集
                    end_counts = end_counts[flag]  # 只保留未完成部分end计数
                    if len(output_ids) == 0:
                        break
        # 如果还有未完成序列,直接放入结果
        for ids in output_ids:
            results.append(ids)
        # 返回结果
        return results


    def batch(
        self,
        inputs_str,
        temperature=1,
        min_ends=1
    ):
        """随机采样n个结果
        说明:非None的topk表示每一步只从概率最高的topk个中采样;而非None的topp
             表示每一步只从概率最高的且概率之和刚好达到topp的若干个token中采样。
        返回:n个解码序列组成的list。
        """
        output_str = []
        # token_ids, segment_ids = self.data_generator(inputs, output_ids)
        batch_nums = len(inputs_str)
        output_ids = self.first_output_ids_batch = np.empty((batch_nums, 0), dtype=int)

        results = [[] for i in range(batch_nums)]
        index_data = [i for i in range(batch_nums)]
        for step in range(self.maxlen):

            token_ids, segment_ids = self.data_generator(inputs_str, output_str)
            inputs = [token_ids, segment_ids]
            probas = self.predict_batch(
                inputs
            )  # 计算当前概率
            # probas /= probas.sum(axis=1, keepdims=True)  # 确保归一化

            probas_new = []
            probas_bool = np.array(token_ids, dtype=bool)
            # np.array(np.where(probas_bool == True))
            for i,sentence in enumerate(probas_bool):
                lie = np.array(np.where(sentence == True))[0]
                probas_new.append(probas[i,lie[-1]])
            probas = np.array(probas_new)
            k_indices = np.argmax(probas,axis=1)
            k_indices = k_indices.reshape(-1,1)

            sample_ids = k_indices
            output_ids = np.concatenate([output_ids, sample_ids], 1)  # 更新输出
            is_end = output_ids[:, -1] == self.end_id  # 标记是否以end标记结束
            end_counts = (output_ids == self.end_id).sum(1)  # 统计出现的end标记
            if output_ids.shape[1] >= self.minlen:  # 最短长度判断
                flag = is_end & (end_counts >= min_ends)  # 标记已完成序列
                if flag.any():  # 如果有已完成的
                    index = np.array(np.where(flag == True))[0]
                    pop_index = []
                    for i in index:
                        results[index_data[i]] = output_ids[i]
                        pop_index.append(index_data[i])
                    for i in pop_index:
                        index_data.remove(i)
                    # for ids in output_ids[flag]:  # 存好已完成序列
                    #     results.append(ids)
                    flag = (flag == False)  # 标记未完成序列
                    inputs_str = [inputs_str[i] for i in index_data]  # 只保留未完成部分输入
                    output_ids = output_ids[flag]  # 只保留未完成部分候选集
                    if len(output_ids) == 0:
                        break
                    else:
                        output_str = [tokenizer.decode(ids) for ids in output_ids]
                else:
                    output_str = [tokenizer.decode(ids) for ids in output_ids]
        # 如果还有未完成序列,直接放入结果
        # for ids in output_ids:
        #     results.append(ids)
        # 返回结果
        return results


    @AutoRegressiveDecoder.wraps(default_rtype='probas')
    def predict(self, inputs, output_ids, states):
        token_ids, segment_ids = inputs
        token_ids = np.concatenate([token_ids, output_ids], 1)
        segment_ids = np.concatenate([segment_ids, np.ones_like(output_ids)], 1)
        with graph.as_default():
            K.set_session(sess)
            nodes = self.last_token(self.model).predict([token_ids, segment_ids])
        return nodes
        # return self.last_token(self.model).predict([token_ids, segment_ids])

    def predict_batch(self, inputs):
        token_ids, segment_ids = inputs
        # token_ids = np.concatenate([token_ids, output_ids], 1)
        # segment_ids = np.concatenate([segment_ids, np.ones_like(output_ids)], 1)
        with graph.as_default():
            K.set_session(sess)
            nodes = self.model.predict([token_ids, segment_ids])
        return nodes
        # return self.last_token(self.model).predict([token_ids, segment_ids])

    def generate(self, text, topk=5):
        text = text[0]
        token_ids, segment_ids = self.tokenizer.encode(text, maxlen=120)
        output_ids = self.beam_search([token_ids, segment_ids],
                                      topk=topk)  # 基于beam search
        return self.tokenizer.decode(output_ids)

    def generate_random(self, text, n=20, topp=0.9):
        token_ids, segment_ids = self.tokenizer.encode(text, maxlen=120)
        # batch_token_ids = sequence_padding(batch_token_ids)
        # batch_segment_ids = sequence_padding(batch_segment_ids)
        # token_ids, segment_ids = self.data_generator(text)
        output_ids = self.random_sample([token_ids, segment_ids], n, topp=topp)  # 基于随机采样
        return [tokenizer.decode(ids) for ids in output_ids]

    def generate_random_sample_topp_gentle(self, text, n=20, topp=0.9):
        token_ids, segment_ids = self.tokenizer.encode(text, maxlen=120)
        # batch_token_ids = sequence_padding(batch_token_ids)
        # batch_segment_ids = sequence_padding(batch_segment_ids)
        # token_ids, segment_ids = self.data_generator(text)
        output_ids = self.random_sample_topp_gentle([token_ids, segment_ids], n, topp=topp)  # 基于随机采样
        return [tokenizer.decode(ids) for ids in output_ids]

    def generate_random_shortest(self, text, n=20, topk=5):
        token_ids, segment_ids = self.tokenizer.encode(text, maxlen=120)
        # batch_token_ids = sequence_padding(batch_token_ids)
        # batch_segment_ids = sequence_padding(batch_segment_ids)
        # token_ids, segment_ids = self.data_generator(text)
        output_ids = self.random_sample_seed([token_ids, segment_ids], n, topk)  # 基于随机采样
        return_str = [tokenizer.decode(ids) for ids in output_ids][0]
        return return_str

    def generate_top(self, text):
        output_ids = self.batch(text)  # 基于随机采样
        return [tokenizer.decode(ids) for ids in output_ids]

    def generate_random_sample_and_beam_search(self, text, n=20, topk=5):
        text = text[0]
        token_ids, segment_ids = self.tokenizer.encode(text, maxlen=120)
        output_ids_r, output_ids_b = self.random_sample_and_beam_search([token_ids, segment_ids], n=n,
                                      topk=topk)  # 基于beam search
        output_str_r = [self.tokenizer.decode(ids) for ids in output_ids_r]
        output_str_b = [self.tokenizer.decode(ids) for ids in output_ids_b]
        return output_str_r, output_str_b


generatemodel = GenerateModel()
model, tokenizer = generatemodel.device_setup()
autotitle = AutoTitle(model, tokenizer, start_id=None, end_id=tokenizer._token_end_id, maxlen=60)


def just_show(file):
    data = []
    try:
        with open(file, 'r', encoding="utf-8") as f:
            lines = [x.strip() for x in f if x.strip() != '']
    except:
        with open(file, 'r', encoding="gbk") as f:
            lines = [x.strip() for x in f if x.strip() != '']
    # s2 = u'她只能应下来。'
    # lines = pd.read_csv(file,encoding="gbk").values.tolist()
    # random.shuffle(lines)
    # lines = lines[:20]
    for s in tqdm(lines[:2]):
        print(s)
        pre = autotitle.generate_random(s)
        print(s)
        print(pre)
        # data.append([s, pre])
    # pd.DataFrame(data,columns=["原始文本","生成文本"]).to_csv("data/text_测试一万字_unilm_修正数据_小说预训练_全部数据_epoch72_反向训练.csv")


def just_show_sentence(file):
    """
    @param file:list
    """
    # file = file[0]
    # for i in range(100):
    #     pre = autotitle.generate_random_sample_topp_gentle(file)
    #     print(pre)


    pre = autotitle.generate(file)
    print(pre)
    # print(pre)
    # if isinstance(pre,list):
    #     for i in pre:
    #         print(i, len(i))
    #
    #
    # if isinstance(pre,str):
    #     print(pre)

def just_show_csv(file):
    data_new = []
    data = pd.read_csv(file).values.tolist()
    for sentence in tqdm(data):
        sentence = sentence[1]
        print(sentence)
        data_new_dan = []
        data_new_dan.extend([sentence, len(sentence)])
        pre = autotitle.generate_random(sentence)
        for i in pre:
            data_new_dan.extend([i, len(i)])

        data_new.append(data_new_dan)
    pd.DataFrame(data_new).to_csv("data/###第3章 非常尴尬_generate_random.csv")
    # return pre

if __name__ == '__main__':
    # file = "train_2842.txt"
    # just_show(file)
    text = ["迈向新时代,当代青年要立鸿鹄之志,做马克思主义的坚定信仰者。"]
    just_show_sentence(text)
    # "简言之,她不好过,李四也别想好过!"
    # s = "张三的对话"
    # print(autotitle.generate(s))
    # file = "data/###第3章 非常尴尬.csv"
    # just_show_csv(file)