机器写作检测项目
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

110 lines
3.0 KiB

# coding:utf-8
import os
import pandas as pd
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import torch
from transformers import (
AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding,
Trainer, TrainingArguments
)
from flask import Flask, jsonify
from flask import request
import uuid
app = Flask(__name__)
app.config["JSON_AS_ASCII"] = False
from threading import Thread
import redis
import uuid
import time
import json
import docx2txt
pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=100, db=13, password="zhicheng123*")
redis_ = redis.Redis(connection_pool=pool, decode_responses=True)
db_key_query = 'query'
db_key_querying = 'querying'
db_key_queryset = 'queryset'
batch_size = 32
def ulit_request_file(file):
file_name = file.filename
file_name_save = "data/request/{}".format(file_name)
file.save(file_name_save)
if file_name.split(".")[-1] == "txt":
try:
with open(file_name_save, encoding="gbk") as f:
content = f.read()
except:
with open(file_name_save, encoding="utf-8") as f:
content = f.read()
# elif file_name.split(".")[-1] == "docx":
# content = docx2txt.process(file_name_save)
content_list = [i for i in content.split("\n")]
print(content_list)
return content_list
@app.route("/predict", methods=["POST"])
def handle_query_predict():
print(request.remote_addr)
# request.form.get('prompt')
dataBases = ""
minSimilarity = "" # txt
minWords = ""
title = request.form.get("title")
author = request.form.get("author") # txt
file = request.files.get('file')
token = ""
account = ""
goodsId = ""
callbackUrl = ""
content_list = ulit_request_file(file)
id_ = str(uuid.uuid1()) # 为query生成唯一标识
id_ = id_.upper()
print("uuid: ", id_)
print(id_)
d = {
'id': id_,
'dataBases': dataBases,
'minSimilarity': minSimilarity,
'minWords': minWords,
'title': title,
'author': author,
'content_list': content_list,
'token': token,
'account': account,
'goodsId': goodsId,
'callbackUrl': callbackUrl
}
print(d)
# 绑定文本和query id
# recall_10(id_, title, abst_zh, content)
load_request_path = './request_data_logs/{}.json'.format(id_)
with open(load_request_path, 'w', encoding='utf8') as f2: # ensure_ascii=False才能输入中文,否则是Unicode字符 indent=2 JSON数据的缩进,美观
json.dump(d, f2, ensure_ascii=False, indent=4)
redis_.rpush(db_key_query, json.dumps({"id": id_, "path": load_request_path})) # 加入redis
return_text = {
'code': 0,
'msg': "请求成功",
'data': {
'balances': "",
'orderId': id_,
'consumeNum': ""
}
}
return jsonify(return_text) # 返回结果
if __name__ == "__main__":
app.run(host="0.0.0.0", port=16005, threaded=True, debug=False)