|
@ -22,14 +22,17 @@ import json |
|
|
import docx2txt |
|
|
import docx2txt |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=100, db=13, password="zhicheng123*") |
|
|
pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=100, db=12, password="zhicheng123*") |
|
|
redis_ = redis.Redis(connection_pool=pool, decode_responses=True) |
|
|
redis_ = redis.Redis(connection_pool=pool, decode_responses=True) |
|
|
|
|
|
|
|
|
db_key_query = 'query' |
|
|
db_key_query = 'query' |
|
|
db_key_querying = 'querying' |
|
|
db_key_querying = 'querying' |
|
|
db_key_queryset = 'queryset' |
|
|
db_key_queryset = 'queryset' |
|
|
batch_size = 32 |
|
|
batch_size = 32 |
|
|
model_name = "AIGC_detector_zhv2" |
|
|
# model_name = "AIGC_detector_zhv2" |
|
|
|
|
|
model_name = "drop_aigc_model_2" |
|
|
|
|
|
# model_name = "drop_aigc_model_3" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
model = AutoModelForSequenceClassification.from_pretrained(model_name).cpu() |
|
|
model = AutoModelForSequenceClassification.from_pretrained(model_name).cpu() |
|
@ -56,10 +59,22 @@ def model_preidct(text): |
|
|
output = torch.sigmoid(output[0]).tolist() |
|
|
output = torch.sigmoid(output[0]).tolist() |
|
|
print(output) |
|
|
print(output) |
|
|
|
|
|
|
|
|
return_list = { |
|
|
if model_name == "drop_aigc_model_2": |
|
|
"humen": output[0][0], |
|
|
return_list = { |
|
|
"robot": output[0][1] |
|
|
"humen": output[0][1], |
|
|
} |
|
|
"robot": output[0][0] |
|
|
|
|
|
} |
|
|
|
|
|
elif model_name == "AIGC_detector_zhv2": |
|
|
|
|
|
return_list = { |
|
|
|
|
|
"humen": output[0][0], |
|
|
|
|
|
"robot": output[0][1] |
|
|
|
|
|
} |
|
|
|
|
|
else: |
|
|
|
|
|
return_list = { |
|
|
|
|
|
"humen": output[0][0], |
|
|
|
|
|
"robot": output[0][1] |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
return return_list |
|
|
return return_list |
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -93,15 +108,15 @@ def main(content_list: list): |
|
|
gpt_score_list.append(res["robot"]) |
|
|
gpt_score_list.append(res["robot"]) |
|
|
sim_word += len(content_list[i]) |
|
|
sim_word += len(content_list[i]) |
|
|
gpt_content.append( |
|
|
gpt_content.append( |
|
|
"<em class=\"similar\" id='score_{}'>".format(str(i)) + content_list[i] + "。\n" + "</em>") |
|
|
"<em class=\"similar\" id='score_{}'>".format(str(i)) + content_list[i] + "\n" + "</em>") |
|
|
elif 0.9 > res["robot"] > 0.5: |
|
|
elif 0.9 >= res["robot"] > 0.5: |
|
|
gpt_score_list.append(res["robot"]) |
|
|
gpt_score_list.append(res["robot"]) |
|
|
sim_word_5_9 += len(content_list[i]) |
|
|
sim_word_5_9 += len(content_list[i]) |
|
|
gpt_content.append( |
|
|
gpt_content.append( |
|
|
"<em class=\"color-gold\" id='score_{}'>".format(str(i)) + content_list[i] + "。\n" + "</em>") |
|
|
"<em class=\"color-gold\" id='score_{}'>".format(str(i)) + content_list[i] + "\n" + "</em>") |
|
|
else: |
|
|
else: |
|
|
gpt_score_list.append(0) |
|
|
gpt_score_list.append(0) |
|
|
gpt_content.append(content_list[i] + "。\n") |
|
|
gpt_content.append(content_list[i] + "\n") |
|
|
|
|
|
|
|
|
return_list["gpt_content"] = "".join(gpt_content) |
|
|
return_list["gpt_content"] = "".join(gpt_content) |
|
|
return_list["gpt_score_list"] = str(gpt_score_list) |
|
|
return_list["gpt_score_list"] = str(gpt_score_list) |
|
|