|
@ -20,6 +20,7 @@ import uuid |
|
|
import time |
|
|
import time |
|
|
import json |
|
|
import json |
|
|
import docx2txt |
|
|
import docx2txt |
|
|
|
|
|
from datetime import datetime |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=100, db=12, password="zhicheng123*") |
|
|
pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=100, db=12, password="zhicheng123*") |
|
@ -32,7 +33,8 @@ batch_size = 32 |
|
|
# model_name = "AIGC_detector_zhv2" |
|
|
# model_name = "AIGC_detector_zhv2" |
|
|
# model_name = "drop_aigc_model_2" |
|
|
# model_name = "drop_aigc_model_2" |
|
|
# model_name = "drop_aigc_model_3" |
|
|
# model_name = "drop_aigc_model_3" |
|
|
model_name = "/home/majiahui/project/models-llm/aigc_check_10" |
|
|
# model_name = "/home/majiahui/project/models-llm/aigc_check_10" |
|
|
|
|
|
model_name = "/home/majiahui/project/models-llm/weipu_aigc_512_3" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
@ -208,7 +210,14 @@ def classify(): # 调用模型,设置最大batch_size |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
return_text = {"resilt": resilt, "probabilities": None, "status_code": 200} |
|
|
return_text = {"resilt": resilt, "probabilities": None, "status_code": 200} |
|
|
load_result_path = "./new_data_logs/{}.json".format(queue_uuid) |
|
|
|
|
|
|
|
|
# 查询增加日期 |
|
|
|
|
|
date_str = datetime.now().strftime("%Y-%m-%d") |
|
|
|
|
|
dir_path = "./new_data_logs/{}/".format(date_str) |
|
|
|
|
|
# 检查并创建目录(如果不存在) |
|
|
|
|
|
os.makedirs(dir_path, exist_ok=True) |
|
|
|
|
|
load_result_path = dir_path + '{}.json'.format(id_) |
|
|
|
|
|
# load_result_path = "./new_data_logs/{}.json".format(query_id) |
|
|
|
|
|
|
|
|
print("query_id: ", queue_uuid) |
|
|
print("query_id: ", queue_uuid) |
|
|
print("load_result_path: ", load_result_path) |
|
|
print("load_result_path: ", load_result_path) |
|
|