diff --git a/chatgpt_detector_model_predict.py b/chatgpt_detector_model_predict.py index 1f8038e..0475204 100644 --- a/chatgpt_detector_model_predict.py +++ b/chatgpt_detector_model_predict.py @@ -34,7 +34,7 @@ batch_size = 32 # model_name = "drop_aigc_model_2" # model_name = "drop_aigc_model_3" # model_name = "/home/majiahui/project/models-llm/aigc_check_10" -model_name_sentence = "/home/majiahui/project/models-llm/weipu_aigc_512_11" +model_name_sentence = "/home/majiahui/project/models-llm/weipu_aigc_512_8" model_name_short = "/home/majiahui/project/models-llm/weipu_aigc_512_5" pantten_biaoti_0 = '^[1-9一二三四五六七八九ⅠⅡⅢⅣⅤⅥⅦⅧⅨ][、.]\s{0,}?[\u4e00-\u9fa5a-zA-Z]+' pantten_biaoti_1 = '^第[一二三四五六七八九]章\s{0,}?[\u4e00-\u9fa5a-zA-Z]+' @@ -109,21 +109,21 @@ def model_preidct(model, text): output = torch.sigmoid(output[0]).tolist() print(output) - if model_name_sentence == "drop_aigc_model_2": - return_list = { - "humen": output[0][1], - "robot": output[0][0] - } - elif model_name_sentence == "AIGC_detector_zhv2": - return_list = { - "humen": output[0][0], - "robot": output[0][1] - } - else: - return_list = { - "humen": output[0][0], - "robot": output[0][1] - } + # if model_name_sentence == "drop_aigc_model_2": + # return_list = { + # "humen": output[0][1], + # "robot": output[0][0] + # } + # elif model_name_sentence == "AIGC_detector_zhv2": + # return_list = { + # "humen": output[0][0], + # "robot": output[0][1] + # } + # else: + return_list = { + "humen": output[0][0], + "robot": output[0][1] + } return return_list @@ -179,20 +179,20 @@ def main(content_list: list): reference_bool = is_reference_sentence(sentence) if reference_bool == False: - if res["robot"] > 0.9: + if res["robot"] > 0.87: for _ in range(len(sentence)): gpt_score_list.append(res["robot"]) gpt_score_sentence_list.append(res["robot"]) sim_word += len(sentence) gpt_content.append( "".format(str(i)) + sentence + "\n" + "") - elif 0.9 >= res["robot"] > 0.5: - for _ in range(len(sentence)): - gpt_score_list.append(res["robot"]) - gpt_score_sentence_list.append(res["robot"]) - sim_word_5_9 += len(sentence) - gpt_content.append( - "".format(str(i)) + sentence + "\n" + "") + # elif 0.9 >= res["robot"] > 0.5: + # for _ in range(len(sentence)): + # gpt_score_list.append(res["robot"]) + # gpt_score_sentence_list.append(res["robot"]) + # sim_word_5_9 += len(sentence) + # gpt_content.append( + # "".format(str(i)) + sentence + "\n" + "") else: for _ in range(len(sentence)): gpt_score_list.append(0) @@ -287,4 +287,4 @@ def classify(): # 调用模型,设置最大batch_size if __name__ == '__main__': t = Thread(target=classify) - t.start() + t.start() \ No newline at end of file