Browse Source

更新算法

dev_2
majiahui@haimaqingfan.com 3 months ago
parent
commit
84d7d00bd0
  1. 50
      chatgpt_detector_model_predict.py

50
chatgpt_detector_model_predict.py

@ -34,7 +34,7 @@ batch_size = 32
# model_name = "drop_aigc_model_2"
# model_name = "drop_aigc_model_3"
# model_name = "/home/majiahui/project/models-llm/aigc_check_10"
model_name_sentence = "/home/majiahui/project/models-llm/weipu_aigc_512_11"
model_name_sentence = "/home/majiahui/project/models-llm/weipu_aigc_512_8"
model_name_short = "/home/majiahui/project/models-llm/weipu_aigc_512_5"
pantten_biaoti_0 = '^[1-9一二三四五六七八九ⅠⅡⅢⅣⅤⅥⅦⅧⅨ][、.]\s{0,}?[\u4e00-\u9fa5a-zA-Z]+'
pantten_biaoti_1 = '^第[一二三四五六七八九]章\s{0,}?[\u4e00-\u9fa5a-zA-Z]+'
@ -109,21 +109,21 @@ def model_preidct(model, text):
output = torch.sigmoid(output[0]).tolist()
print(output)
if model_name_sentence == "drop_aigc_model_2":
return_list = {
"humen": output[0][1],
"robot": output[0][0]
}
elif model_name_sentence == "AIGC_detector_zhv2":
return_list = {
"humen": output[0][0],
"robot": output[0][1]
}
else:
return_list = {
"humen": output[0][0],
"robot": output[0][1]
}
# if model_name_sentence == "drop_aigc_model_2":
# return_list = {
# "humen": output[0][1],
# "robot": output[0][0]
# }
# elif model_name_sentence == "AIGC_detector_zhv2":
# return_list = {
# "humen": output[0][0],
# "robot": output[0][1]
# }
# else:
return_list = {
"humen": output[0][0],
"robot": output[0][1]
}
return return_list
@ -179,20 +179,20 @@ def main(content_list: list):
reference_bool = is_reference_sentence(sentence)
if reference_bool == False:
if res["robot"] > 0.9:
if res["robot"] > 0.87:
for _ in range(len(sentence)):
gpt_score_list.append(res["robot"])
gpt_score_sentence_list.append(res["robot"])
sim_word += len(sentence)
gpt_content.append(
"<em class=\"similar\" id='score_{}'>".format(str(i)) + sentence + "\n" + "</em>")
elif 0.9 >= res["robot"] > 0.5:
for _ in range(len(sentence)):
gpt_score_list.append(res["robot"])
gpt_score_sentence_list.append(res["robot"])
sim_word_5_9 += len(sentence)
gpt_content.append(
"<em class=\"color-gold\" id='score_{}'>".format(str(i)) + sentence + "\n" + "</em>")
# elif 0.9 >= res["robot"] > 0.5:
# for _ in range(len(sentence)):
# gpt_score_list.append(res["robot"])
# gpt_score_sentence_list.append(res["robot"])
# sim_word_5_9 += len(sentence)
# gpt_content.append(
# "<em class=\"color-gold\" id='score_{}'>".format(str(i)) + sentence + "\n" + "</em>")
else:
for _ in range(len(sentence)):
gpt_score_list.append(0)
@ -287,4 +287,4 @@ def classify(): # 调用模型,设置最大batch_size
if __name__ == '__main__':
t = Thread(target=classify)
t.start()
t.start()
Loading…
Cancel
Save