You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

390 lines
12 KiB

import os
from flask import Flask, render_template, request, redirect, url_for, jsonify
from werkzeug.utils import secure_filename
app = Flask(__name__)
import time
import re
import requests
import uuid
# 上传文件存储目录
UPLOAD_FOLDER = '/home/majiahui/project/ai_creative_workshop/uploads'
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
# 正则表达式
RE_CHINA_NUMS = "[1-9].(.*)"
# 允许的文件类型
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg', 'gif'}
fenhao_list = [";", ""]
prompt_picture_dict = {
"1": "图中的商品:{},有什么突出亮点和卖点,请分条列举出来,要求亮点或者卖点要用一个词总结,冒号后面在进行解释,例如:1. 时尚黑色:图中的鞋子是黑色的,符合时尚潮流,适合不同场合的穿搭。",
"2": "图中的商品:{},有什么亮点,写一段营销话语",
"3": "图中的商品:{},有以下亮点:\n{}\n根据这些优势亮点,写一段营销文本让商品卖的更好",
"4": "图中的商品:{},有哪些不足之处可以改进?",
"5": "图中{}的渲染图做哪些调整可以更吸引消费者",
"6": "根据图中的商品:{},生成一个商品名称,要求商品名称格式中包含的信息(有品牌名,有产品名,有细分产品种类词,比如猫砂,篮球鞋等,有三到五个卖点和形容词)",
}
prompt_text_dict = {
"1": "",
"2": "User:商品名称:{};卖点:{},请帮我生成一个有很多活泼表情的小红书文案,以商品使用者角度来写作,让人感觉真实\nAssistant:",
"3": "图中{}有以下亮点:\n{}\n根据这些优势亮点,写一段营销文本让商品买的更好",
"4": "图中{}有哪些不足之处可以改进?",
"5": "图中{}的渲染图做哪些调整可以更吸引消费者",
}
def dialog_line_parse(url, text):
"""
将数据输入模型进行分析并输出结果
:param url: 模型url
:param text: 进入模型的数据
:return: 模型返回结果
"""
response = requests.post(
url,
json=text,
timeout=1000
)
if response.status_code == 200:
return response.json()
else:
# logger.error(
# "【{}】 Failed to get a proper response from remote "
# "server. Status Code: {}. Response: {}"
# "".format(url, response.status_code, response.text)
# )
print("{}】 Failed to get a proper response from remote "
"server. Status Code: {}. Response: {}"
"".format(url, response.status_code, response.text))
print(text)
return {}
class log:
def __init__(self):
pass
def log(*args, **kwargs):
format = '%Y/%m/%d-%H:%M:%S'
format_h = '%Y-%m-%d'
value = time.localtime(int(time.time()))
dt = time.strftime(format, value)
dt_log_file = time.strftime(format_h, value)
log_file = 'log_file/access-%s' % dt_log_file + ".log"
if not os.path.exists(log_file):
with open(os.path.join(log_file), 'w', encoding='utf-8') as f:
print(dt, *args, file=f, **kwargs)
else:
with open(os.path.join(log_file), 'a+', encoding='utf-8') as f:
print(dt, *args, file=f, **kwargs)
# 检查文件扩展名
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
def picture_model_predict(image_path, prompt):
# query = tokenizer.from_list_format([
# {'image': image_path},
# {'text': prompt},
# ])
#
# response, history = model.chat(tokenizer, query=query, history=None)
# return response
url = "http://192.168.31.74:19001/predict"
data = {
"path_list": [image_path],
"prompt": prompt
}
result = dialog_line_parse(url, data)["data"]
return result
def text_model_predict(prompt):
# query = tokenizer.from_list_format([
# {'image': image_path},
# {'text': prompt},
# ])
#
# response, history = model.chat(tokenizer, query=query, history=None)
# return response
url = "http://192.168.31.74:12000/predict"
data = {
"texts": prompt,
}
result = dialog_line_parse(url, data)["data"]
return result
def type_1(path_list, commodity, input_type):
code = 200
result_list_len = False
dan_result_geshi = True
dan_result_geshi_maohao = True
return_list = []
prompy_text = prompt_picture_dict[input_type]
prompy_text = prompy_text.format(commodity)
for path in path_list:
while True:
result = picture_model_predict(path, prompy_text)
result_list = str(result).split("\n")
result_list = [i for i in result_list if i != ""]
if len(result_list) > 3:
result_list_len = True
for i in result_list:
response_re = re.findall(RE_CHINA_NUMS, i)
if response_re == []:
dan_result_geshi = False
continue
if "" not in i:
dan_result_geshi_maohao = False
continue
if result_list_len == True and dan_result_geshi == True and dan_result_geshi_maohao == True:
break
maidian_list = []
for i in result_list:
response_re = re.findall(RE_CHINA_NUMS, i)
guanjianci = response_re[0].split("")
maidian_list.append([i, guanjianci])
return_list.append(maidian_list)
return code, return_list
def type_2(path_list, commodity, input_type, additional):
code = 200
return_list = []
return_1_data = type_1(path_list, commodity, "1")
maidian = [i[0][1][0] for i in return_1_data]
fenhao = ""
if additional != "":
for i in fenhao_list:
if i in additional:
fenhao = i
break
if fenhao == "":
return code, []
maidian_user = [i for i in additional.split(fenhao) if i != ""]
maidian += maidian_user
prompt_text = prompt_text_dict[input_type].format(commodity, "".join(maidian))
result = text_model_predict(prompt_text)
return_list.append(result)
return code, return_list
def type_3(path_list, commodity, input_type, additional):
code = 200
return_list = []
return_1_data = type_1(path_list, commodity, "1")
maidian = [i[0][1][0] for i in return_1_data]
fenhao = ""
if additional != "":
for i in fenhao_list:
if i in additional:
fenhao = i
break
if fenhao == "":
return code, []
maidian_user = [i for i in additional.split(fenhao) if i != ""]
maidian += maidian_user
prompt_text = prompt_text_dict[input_type].format(commodity, "".join(maidian))
result = text_model_predict(prompt_text)
return_list.append(result)
return code, return_list
def type_4(path_list, commodity, input_type, additional):
code = 200
return_list = []
return_1_data = type_1(path_list, commodity, "1")
maidian = [i[0][1][0] for i in return_1_data]
fenhao = ""
if additional != "":
for i in fenhao_list:
if i in additional:
fenhao = i
break
if fenhao == "":
return code, []
maidian_user = [i for i in additional.split(fenhao) if i != ""]
maidian += maidian_user
prompt_text = prompt_text_dict[input_type].format(commodity, "".join(maidian))
result = text_model_predict(prompt_text)
return_list.append(result)
return code, return_list
def type_5(path_list, commodity, input_type):
code = 200
return_list = []
prompy_text = prompt_picture_dict[input_type]
prompy_text = prompy_text.format(commodity)
result_list_type = False
for path in path_list:
while True:
if result_list_type == True:
break
result = picture_model_predict(path, prompy_text)
result_list = str(result).split("\n")
result_list = [i for i in result_list if i != ""]
result_list_new = []
for i in result_list:
response_re = re.findall(RE_CHINA_NUMS, i)
if response_re == []:
continue
else:
result_list_new.append(i)
if result_list_new != []:
result_list_type = True
return_list.append(result_list_new)
return code, return_list
def type_6(path_list, commodity, input_type):
code = 200
return_list = []
commodity_list = []
prompy_text = prompt_picture_dict[input_type]
prompy_text = prompy_text.format(commodity)
for path in path_list:
for i in range(5):
result = picture_model_predict(path, prompy_text)
commodity_list.append(result)
return_list.append(commodity_list)
return code, return_list
def type_7(path_list, additional):
code = 200
prompy_text = additional
return_list = []
for path in path_list:
result = picture_model_predict(path, prompy_text)
return_list.append(result)
return code, return_list
def picture_main(path_list, commodity, input_type, additional):
if input_type == "1":
return type_1(path_list, commodity, input_type)
elif input_type == "2":
return type_2(path_list, commodity, input_type, additional)
#
elif input_type == "3":
return type_3(path_list, commodity, input_type, additional)
#
elif input_type == "4":
return type_4(path_list, commodity, input_type, additional)
elif input_type == "5":
return type_5(path_list, commodity, input_type)
elif input_type == "6":
return type_6(path_list, commodity, input_type)
elif input_type == "7":
return type_7(path_list, additional)
else:
return "1111"
# 文件上传处理
@app.route('/vl_chat', methods=['POST'])
def upload_file():
file0 = request.files.get('file0')
file1 = request.files.get('file1')
file2 = request.files.get('file2')
file3 = request.files.get('file3')
file4 = request.files.get('file4')
file5 = request.files.get('file5')
commodity = request.form.get('commodity')
type_str = request.form.get('type')
additional = request.form.get("additional")
file_list = [file0, file1, file2, file3, file4, file5]
# if commodity == False or type_str == False and file0 == False:
# return str(400)
try:
assert file0
except:
return_text = {"texts": "没有主图", "probabilities": None, "status_code": 400}
return jsonify(return_text)
try:
assert commodity
except:
return_text = {"texts": "没有商品类型", "probabilities": None, "status_code": 400}
return jsonify(return_text)
try:
assert type_str
except:
return_text = {"texts": "没有生成类型", "probabilities": None, "status_code": 400}
return jsonify(return_text)
path_list = []
for file in file_list:
if file and allowed_file(file.filename):
filename = secure_filename(file.filename)
kuozhan = filename.split(".")[-1]
uuid_picture = str(uuid.uuid1())
filename = ".".join([uuid_picture, kuozhan])
path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
file.save(path)
path_list.append(path)
# 业务逻辑
try:
type_list = str(type_str).split(",")
result = []
for type_dan in type_list:
print("type:", type_dan)
code, result_dan = picture_main(path_list, commodity, type_dan, additional)
result.append(result_dan)
return_text = {"texts": result, "probabilities": None, "status_code": code}
except:
return_text = {"texts": "运算出错", "probabilities": None, "status_code": 400}
log.log('start at',
'filename:{}, commodity:{}, type:{}, additional:{}, result:{}'.format(
str(path_list), commodity, str(type_str), additional, return_text))
return jsonify(return_text)
# 无文件上传
# @app.route('/chat', methods=['POST'])
# def upload_file():
#
# type = request.files.get('type')
# describe = request.form.get("describe")
# advantage = request.form.get("dadvantage")
#
# return "1"
if __name__ == "__main__":
app.run(host="0.0.0.0", port=19000, threaded=True)