You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
179 lines
6.1 KiB
179 lines
6.1 KiB
import argparse
|
|
import itertools
|
|
import json
|
|
import os
|
|
from functools import partial
|
|
|
|
import torch
|
|
from tqdm import tqdm
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
from transformers.generation import GenerationConfig
|
|
|
|
|
|
def collate_fn(batches, pad_token_id):
|
|
|
|
input_tokens = [_['input_tokens'] for _ in batches]
|
|
target_lengths = [_['target_lengths'] for _ in batches]
|
|
answers = [_['answer'] for _ in batches]
|
|
question_id = [_['question_id'] for _ in batches]
|
|
|
|
chunk_sizes = [len(_) for _ in input_tokens]
|
|
|
|
input_tokens = [_ for _ in itertools.chain.from_iterable(input_tokens)]
|
|
|
|
max_lengths = max([len(_) for _ in input_tokens])
|
|
input_tokens = [[pad_token_id] * (max_lengths - len(_)) + _
|
|
for _ in input_tokens]
|
|
input_tokens = torch.LongTensor(input_tokens)
|
|
|
|
attention_mask = 1 - input_tokens.eq(pad_token_id).float()
|
|
|
|
return input_tokens, attention_mask, target_lengths, answers, chunk_sizes, question_id
|
|
|
|
|
|
class MultipleChoiceDataste(torch.utils.data.Dataset):
|
|
|
|
def __init__(self, test, tokenizer):
|
|
self.datas = []
|
|
with open(test) as fin:
|
|
for line in tqdm(fin):
|
|
self.datas.append(json.loads(line.strip()))
|
|
self.tokenizer = tokenizer
|
|
|
|
def __len__(self):
|
|
return len(self.datas)
|
|
|
|
def __getitem__(self, idx):
|
|
|
|
data = self.datas[idx]
|
|
prompt = data['prompt']
|
|
|
|
prompt_tokens = self.tokenizer(prompt).input_ids
|
|
target_tokens = [
|
|
self.tokenizer(' ' + _).input_ids
|
|
for _ in ['A', 'B', 'C', 'D']
|
|
]
|
|
|
|
return {
|
|
'input_tokens': [prompt_tokens + _ for _ in target_tokens],
|
|
'target_lengths': [len(_) for _ in target_tokens],
|
|
'answer': data['answer'],
|
|
'question_id': data['question_id'],
|
|
}
|
|
|
|
|
|
class InferenceSampler(torch.utils.data.sampler.Sampler):
|
|
|
|
def __init__(self, size):
|
|
self._size = int(size)
|
|
assert size > 0
|
|
self._rank = torch.distributed.get_rank()
|
|
self._world_size = torch.distributed.get_world_size()
|
|
self._local_indices = self._get_local_indices(size, self._world_size,
|
|
self._rank)
|
|
|
|
@staticmethod
|
|
def _get_local_indices(total_size, world_size, rank):
|
|
shard_size = total_size // world_size
|
|
left = total_size % world_size
|
|
shard_sizes = [shard_size + int(r < left) for r in range(world_size)]
|
|
|
|
begin = sum(shard_sizes[:rank])
|
|
end = min(sum(shard_sizes[:rank + 1]), total_size)
|
|
return range(begin, end)
|
|
|
|
def __iter__(self):
|
|
yield from self._local_indices
|
|
|
|
def __len__(self):
|
|
return len(self._local_indices)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--checkpoint', type=str, default='')
|
|
parser.add_argument('--dataset', type=str, default='')
|
|
parser.add_argument('--batch-size', type=int, default=1)
|
|
parser.add_argument('--num-workers', type=int, default=1)
|
|
args = parser.parse_args()
|
|
|
|
torch.distributed.init_process_group(
|
|
backend='nccl',
|
|
world_size=int(os.getenv('WORLD_SIZE', '1')),
|
|
rank=int(os.getenv('RANK', '0')),
|
|
)
|
|
|
|
torch.cuda.set_device(int(os.getenv('LOCAL_RANK', 0)))
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
args.checkpoint, device_map='cuda', trust_remote_code=True).eval()
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(args.checkpoint,
|
|
trust_remote_code=True)
|
|
model.generation_config = GenerationConfig.from_pretrained(args.checkpoint, trust_remote_code=True)
|
|
model.generation_config.top_p = 0.01
|
|
|
|
dataset = MultipleChoiceDataste(test=args.dataset, tokenizer=tokenizer)
|
|
dataloader = torch.utils.data.DataLoader(
|
|
dataset=dataset,
|
|
# sampler=InferenceSampler(1000),
|
|
sampler=InferenceSampler(len(dataset)),
|
|
batch_size=args.batch_size,
|
|
num_workers=args.num_workers,
|
|
pin_memory=True,
|
|
drop_last=False,
|
|
collate_fn=partial(collate_fn, pad_token_id=tokenizer.eod_id),
|
|
)
|
|
|
|
results = []
|
|
fout = open('result_{}.jsonl'.format(torch.distributed.get_rank()), 'w')
|
|
with torch.no_grad():
|
|
for _, (input_tokens, attention_mask, target_lengths, answers,
|
|
chunk_sizes, question_ids) in tqdm(enumerate(dataloader)):
|
|
|
|
outputs = model(
|
|
input_ids=input_tokens[:, :-1].cuda(),
|
|
attention_mask=attention_mask[:, :-1].cuda(),
|
|
return_dict=True,
|
|
)
|
|
losses = torch.nn.functional.cross_entropy(outputs.logits.permute(
|
|
0, 2, 1),
|
|
input_tokens[:,
|
|
1:].cuda(),
|
|
reduction='none')
|
|
|
|
losses = losses.split(chunk_sizes, dim=0)
|
|
|
|
for loss, target_length, answer, question_id in zip(losses, target_lengths,
|
|
answers, question_ids):
|
|
|
|
target_loss = loss.mean(-1)
|
|
for _ in range(len(target_length)):
|
|
target_loss[_] = loss[_, -target_length[_]:].mean()
|
|
pred = target_loss.argmin().item()
|
|
pred = chr(pred + 65)
|
|
if pred == answer:
|
|
results.append(1)
|
|
else:
|
|
results.append(0)
|
|
answer_record = {
|
|
'question_id': question_id,
|
|
'prediction': pred
|
|
}
|
|
print(json.dumps(answer_record), file=fout)
|
|
fout.close()
|
|
|
|
torch.distributed.barrier()
|
|
|
|
world_size = torch.distributed.get_world_size()
|
|
merged_results = [None for _ in range(world_size)]
|
|
torch.distributed.all_gather_object(merged_results, results)
|
|
|
|
merged_results = [_ for _ in itertools.chain.from_iterable(merged_results)]
|
|
|
|
if torch.distributed.get_rank() == 0:
|
|
print(f"Evaluating {args.dataset} ...")
|
|
print(f'Acc@1: {sum(merged_results) / len(merged_results)}')
|
|
|
|
torch.distributed.barrier()
|
|
|