You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

39 lines
1.0 KiB

import pandas as pd
import json
'''
This script provides `global top-1 accuracy` metric calculation for mmbench_dev.
'''
predictions = json.load(open('mmbench_dev_20230712.json'))
index2predictions = {}
for pred in predictions:
index2predictions[pred['index']] = pred['prediction']
datas = pd.read_csv("data/mmbench/mmbench_dev_20230712/mmbench_dev_20230712.tsv", sep='\t')
glb_opts = ['A', 'B', 'C', 'D']
index2answer = {}
for idx in range(len(datas)):
data = datas.iloc[idx]
index2answer[data['index']] = glb_opts.index(data['answer'])
identity_indexes = list(set([int(_ % 1e6) for _ in index2predictions.keys()]))
correct = 0
total = 0
for index in identity_indexes:
for _ in range(4):
cycle_index = int(_ * 1e6 + index)
if index2predictions.get(cycle_index, None) is not None:
if index2predictions[cycle_index] == index2answer[cycle_index]:
continue
else:
print(cycle_index)
break
else:
correct += 1
total += 1
print(correct, total)