# Evaluation ## Dependencies ```bash pip install pycocoevalcap tqdm ``` ## Image Caption ### [Flickr30K](https://bryanplummer.com/Flickr30kEntities/)
Data Preparation ```bash mkdir -p data/flickr && cd data/flickr # download images from https://bryanplummer.com/Flickr30kEntities/ # karpathy split annotations can be downloaded from https://cs.stanford.edu/people/karpathy/deepimagesent/ # download converted files wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/flickr30k/flickr30k_karpathy_test.json wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/flickr30k/flickr30k_karpathy_train.json cd ../.. ```
Evaluate ```bash ds="flickr" checkpoint=/PATH/TO/CHECKPOINT python -m torch.distributed.launch --use-env \ --nproc_per_node ${NPROC_PER_NODE:-8} \ --nnodes ${WORLD_SIZE:-1} \ --node_rank ${RANK:-0} \ --master_addr ${MASTER_ADDR:-127.0.0.1} \ --master_port ${MASTER_PORT:-12345} \ evaluate_caption.py \ --checkpoint $checkpoint \ --dataset $ds \ --batch-size 8 \ --num-workers 2 ```
### [Nocaps](https://nocaps.org/)
Data Preparation ```bash mkdir -p data/nocaps && cd data/nocaps # download images from https://nocaps.org/download # original annotations can be downloaded from https://nocaps.s3.amazonaws.com/nocaps_val_4500_captions.json # download converted files wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/nocaps/nocaps_val.json cd ../.. ```
Evaluate ```bash ds="nocaps" checkpoint=/PATH/TO/CHECKPOINT python -m torch.distributed.launch --use-env \ --nproc_per_node ${NPROC_PER_NODE:-8} \ --nnodes ${WORLD_SIZE:-1} \ --node_rank ${RANK:-0} \ --master_addr ${MASTER_ADDR:-127.0.0.1} \ --master_port ${MASTER_PORT:-12345} \ evaluate_caption.py \ --checkpoint $checkpoint \ --dataset $ds \ --batch-size 8 \ --num-workers 2 ```
## [COCO](https://cocodataset.org/) > COCO images are used in VQAv2/OK-VQA/RefCOCO/RefCOCO+/RefCOCOg, make sure you have already downloaded COCO images before evaluate on these benchmarks.
Data Preparation ```bash mkdir -p data/coco && cd data/coco # download coco2014 images wget http://images.cocodataset.org/zips/train2014.zip && unzip train2014.zip wget http://images.cocodataset.org/zips/val2014.zip && unzip val2014.zip wget http://images.cocodataset.org/zips/test2015.zip && unzip test2015.zip cd ../.. ```
## General VQA ### [VQAv2](https://visualqa.org/)
Data Preparation ```bash mkdir -p data/vqav2 && cd data/vqav2 # make sure you have downloaded COCO images # download questions and annotations wget https://s3.amazonaws.com/cvmlp/vqa/mscoco/vqa/v2_Annotations_Train_mscoco.zip && unzip v2_Annotations_Train_mscoco.zip wget https://s3.amazonaws.com/cvmlp/vqa/mscoco/vqa/v2_Questions_Train_mscoco.zip && unzip v2_Questions_Train_mscoco.zip wget https://s3.amazonaws.com/cvmlp/vqa/mscoco/vqa/v2_Annotations_Val_mscoco.zip && unzip v2_Annotations_Val_mscoco.zip wget https://s3.amazonaws.com/cvmlp/vqa/mscoco/vqa/v2_Questions_Val_mscoco.zip && unzip v2_Questions_Val_mscoco.zip wget https://s3.amazonaws.com/cvmlp/vqa/mscoco/vqa/v2_Questions_Test_mscoco.zip && unzip v2_Questions_Test_mscoco.zip # download converted files wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/vqav2/vqav2_train.jsonl wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/vqav2/vqav2_val.jsonl wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/vqav2/vqav2_testdev.jsonl ```
Evaluate ```bash checkpoint=/PATH/TO/CHECKPOINT for ds in "vqav2_val" "vqav2_testdev" python -m torch.distributed.launch --use-env \ --nproc_per_node ${NPROC_PER_NODE:-8} \ --nnodes ${WORLD_SIZE:-1} \ --node_rank ${RANK:-0} \ --master_addr ${MASTER_ADDR:-127.0.0.1} \ --master_port ${MASTER_PORT:-12345} \ evaluate_vqa.py \ --checkpoint $checkpoint \ --dataset $ds \ --batch-size 8 \ --num-workers 2 ```
### [OKVQA](https://okvqa.allenai.org/)
Data Preparation ```bash mkdir -p data/okvqa && cd data/okvqa # download annotations and questions wget https://okvqa.allenai.org/static/data/mscoco_train2014_annotations.json.zip && unzip mscoco_train2014_annotations.json.zip wget https://okvqa.allenai.org/static/data/OpenEnded_mscoco_train2014_questions.json.zip && unzip OpenEnded_mscoco_train2014_questions.json.zip wget https://okvqa.allenai.org/static/data/mscoco_val2014_annotations.json.zip && unzip mscoco_val2014_annotations.json.zip wget https://okvqa.allenai.org/static/data/OpenEnded_mscoco_val2014_questions.json.zip && unzip OpenEnded_mscoco_val2014_questions.json.zip # download converted files wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/okvqa/okvqa_train.jsonl wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/okvqa/okvqa_val.jsonl cd ../.. ```
Evaluate ```bash ds="okvqa_val" checkpoint=/PATH/TO/CHECKPOINT python -m torch.distributed.launch --use-env \ --nproc_per_node ${NPROC_PER_NODE:-8} \ --nnodes ${WORLD_SIZE:-1} \ --node_rank ${RANK:-0} \ --master_addr ${MASTER_ADDR:-127.0.0.1} \ --master_port ${MASTER_PORT:-12345} \ evaluate_vqa.py \ --checkpoint $checkpoint \ --dataset $ds \ --batch-size 8 \ --num-workers 2 ```
### [TextVQA](https://textvqa.org/)
Data Preparation ```bash mkdir -p data/textvqa && cd data/textvqa # download images wget https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip && unzip train_val_images.zip # download annotations and questions wget https://dl.fbaipublicfiles.com/textvqa/data/TextVQA_0.5.1_train.json wget https://dl.fbaipublicfiles.com/textvqa/data/TextVQA_0.5.1_val.json # download converted files wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/textvqa/textvqa_train_annotations.json wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/textvqa/textvqa_train_questions.json wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/textvqa/textvqa_train.jsonl wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/textvqa/textvqa_val_annotations.json wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/textvqa/textvqa_val_questions.json wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/textvqa/textvqa_val.jsonl cd ../.. ```
Evaluate ```bash ds="textvqa_val" checkpoint=/PATH/TO/CHECKPOINT python -m torch.distributed.launch --use-env \ --nproc_per_node ${NPROC_PER_NODE:-8} \ --nnodes ${WORLD_SIZE:-1} \ --node_rank ${RANK:-0} \ --master_addr ${MASTER_ADDR:-127.0.0.1} \ --master_port ${MASTER_PORT:-12345} \ evaluate_vqa.py \ --checkpoint $checkpoint \ --dataset $ds \ --batch-size 8 \ --num-workers 2 ```
### [VizWiz](https://vizwiz.org/tasks-and-datasets/vqa/)
Data Preparation ```bash mkdir -p data/vizwiz && cd data/vizwiz # download images wget https://vizwiz.cs.colorado.edu/VizWiz_final/images/train.zip && unzip train.zip wget https://vizwiz.cs.colorado.edu/VizWiz_final/images/val.zip && unzip val.zip wget https://vizwiz.cs.colorado.edu/VizWiz_final/images/test.zip && unzip test.zip # download annotations wget https://vizwiz.cs.colorado.edu/VizWiz_final/vqa_data/Annotations.zip && unzip Annotations.zip # download converted files # train wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/vizwiz/vizwiz_train_annotations.json wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/vizwiz/vizwiz_train_questions.json wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/vizwiz/vizwiz_train.jsonl # val wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/vizwiz/vizwiz_val_annotations.json wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/vizwiz/vizwiz_val_questions.json wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/vizwiz/vizwiz_val.jsonl # test wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/vizwiz/vizwiz_test.jsonl cd ../.. ```
Evaluation ```bash # evaluate vqa score on vizwiz val split ds="vizwiz_val" checkpoint=/PATH/TO/CHECKPOINT python -m torch.distributed.launch --use-env \ --nproc_per_node ${NPROC_PER_NODE:-8} \ --nnodes ${WORLD_SIZE:-1} \ --node_rank ${RANK:-0} \ --master_addr ${MASTER_ADDR:-127.0.0.1} \ --master_port ${MASTER_PORT:-12345} \ evaluate_vqa.py \ --checkpoint $checkpoint \ --dataset $ds \ --batch-size 8 \ --num-workers 2 ```
### [DocVQA](https://www.docvqa.org/datasets)
Data Preparation ```bash mkdir -p data/docvqa && cd data/docvqa # download images and annotations from https://www.docvqa.org/datasets # download converted files # train wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/docvqa/train.jsonl # val wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/docvqa/val.jsonl # test wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/docvqa/test.jsonl cd ../.. ```
Evaluation ```bash # evaluate vqa score on docvqa val split ds="docvqa_val" checkpoint=/PATH/TO/CHECKPOINT python -m torch.distributed.launch --use-env \ --nproc_per_node ${NPROC_PER_NODE:-8} \ --nnodes ${WORLD_SIZE:-1} \ --node_rank ${RANK:-0} \ --master_addr ${MASTER_ADDR:-127.0.0.1} \ --master_port ${MASTER_PORT:-12345} \ evaluate_vqa.py \ --checkpoint $checkpoint \ --dataset $ds \ --batch-size 8 \ --num-workers 2 ```
### [ChartQA](https://aclanthology.org/2022.findings-acl.177/)
Data Preparation ```bash mkdir -p data/chartqa && cd data/chartqa # download images from https://drive.google.com/file/d/1Lm_w6zeET1Hyl_9ks6w5nEsgpoyPHalV/view # download converted files wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/chartqa/train_human.jsonl wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/chartqa/train_augmented.jsonl wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/chartqa/test_human.jsonl wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/chartqa/test_augmented.jsonl cd ../.. ```
Evaluate ```bash checkpoint=/PATH/TO/CHECKPOINT for ds in "chartqa_test_human" "chartqa_test_augmented" python -m torch.distributed.launch --use-env \ --nproc_per_node ${NPROC_PER_NODE:-8} \ --nnodes ${WORLD_SIZE:-1} \ --node_rank ${RANK:-0} \ --master_addr ${MASTER_ADDR:-127.0.0.1} \ --master_port ${MASTER_PORT:-12345} \ evaluate_vqa.py \ --checkpoint $checkpoint \ --dataset $ds \ --batch-size 8 \ --num-workers 2 ```
### [GQA](https://cs.stanford.edu/people/dorarad/gqa/about.html)
Data Preparation ```bash mkdir -p data/gqa && cd data/gqa # download images wget https://downloads.cs.stanford.edu/nlp/data/gqa/images.zip unzip images.zip # download converted files wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/gqa/testdev_balanced.jsonl wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/gqa/train_balanced.jsonl cd ../.. ```
Evaluate ```bash checkpoint=/PATH/TO/CHECKPOINT ds="gqa_testdev" python -m torch.distributed.launch --use-env \ --nproc_per_node ${NPROC_PER_NODE:-8} \ --nnodes ${WORLD_SIZE:-1} \ --node_rank ${RANK:-0} \ --master_addr ${MASTER_ADDR:-127.0.0.1} \ --master_port ${MASTER_PORT:-12345} \ evaluate_vqa.py \ --checkpoint $checkpoint \ --dataset $ds \ --batch-size 8 \ --num-workers 2 ```
### [OCRVQA](https://ocr-vqa.github.io/)
Data Preparation ```bash mkdir -p data/ocrvqa && cd data/ocrvqa # download images by following instructions at https://ocr-vqa.github.io/kvqa_ProjectFiles/README.txt # download converted files wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/ocrvqa/ocrvqa_train.jsonl wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/ocrvqa/ocrvqa_val.jsonl wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/ocrvqa/ocrvqa_test.jsonl cd ../.. ```
Evaluate ```bash checkpoint=/PATH/TO/CHECKPOINT ds="ocrvqa_test" python -m torch.distributed.launch --use-env \ --nproc_per_node ${NPROC_PER_NODE:-8} \ --nnodes ${WORLD_SIZE:-1} \ --node_rank ${RANK:-0} \ --master_addr ${MASTER_ADDR:-127.0.0.1} \ --master_port ${MASTER_PORT:-12345} \ evaluate_vqa.py \ --checkpoint $checkpoint \ --dataset $ds \ --batch-size 8 \ --num-workers 2 ```
### [AI2Diagram](https://allenai.org/data/diagrams)
Data Preparation ```bash mkdir -p data/ai2diagram && cd data/ai2diagram # download images wget https://ai2-public-datasets.s3.amazonaws.com/diagrams/ai2d-all.zip # download converted files wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/ai2diagram/train.jsonl wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/ai2diagram/test.jsonl cd ../.. ```
Evaluate ```bash checkpoint=/PATH/TO/CHECKPOINT ds="ai2diagram_test" python -m torch.distributed.launch --use-env \ --nproc_per_node ${NPROC_PER_NODE:-8} \ --nnodes ${WORLD_SIZE:-1} \ --node_rank ${RANK:-0} \ --master_addr ${MASTER_ADDR:-127.0.0.1} \ --master_port ${MASTER_PORT:-12345} \ evaluate_vqa.py \ --checkpoint $checkpoint \ --dataset $ds \ --batch-size 8 \ --num-workers 2 ```
### [ScienceQA](https://github.com/lupantech/ScienceQA)
Data Preparation ```bash mkdir -p data/scienceqa/images && cd data/scienceqa/images # download images wget https://scienceqa.s3.us-west-1.amazonaws.com/images/test.zip && unzip test.zip cd .. # download original questions wget https://github.com/lupantech/ScienceQA/blob/main/data/scienceqa/problems.json # download converted files wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/scienceqa/scienceqa_test_img.jsonl cd ../.. ```
Evaluate ```bash ds="scienceqa_test_img" checkpoint=/PATH/TO/CHECKPOINT python -m torch.distributed.launch --use-env \ --nproc_per_node ${NPROC_PER_NODE:-8} \ --nnodes ${WORLD_SIZE:-1} \ --node_rank ${RANK:-0} \ --master_addr ${MASTER_ADDR:-127.0.0.1} \ --master_port ${MASTER_PORT:-12345} \ evaluate_multiple_choice.py \ --checkpoint $checkpoint \ --dataset $ds \ --batch-size 8 \ --num-workers 2 ```
## Refer Expression Comprehension ### RefCOCO
Data Preparation ```bash mkdir -p data/refcoco && cd data/refcoco # download converted files wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/refcoco/refcoco_val.jsonl wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/refcoco/refcoco_testA.jsonl wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/refcoco/refcoco_testB.jsonl cd ../.. ```
Evaluation ```bash checkpoint=/PATH/TO/CHECKPOINT for ds in "refcoco_val" "refcoco_testA" "refcoco_testB" python -m torch.distributed.launch --use-env \ --nproc_per_node ${NPROC_PER_NODE:-8} \ --nnodes ${WORLD_SIZE:-1} \ --node_rank ${RANK:-0} \ --master_addr ${MASTER_ADDR:-127.0.0.1} \ --master_port ${MASTER_PORT:-12345} \ evaluate_grounding.py \ --checkpoint $checkpoint \ --dataset $ds \ --batch-size 8 \ --num-workers 2 ```
### RefCOCO+
Data Preparation ```bash mkdir -p data/refcoco+ && cd data/refcoco+ # download converted files wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/refcoco%2B/refcoco%2B_val.jsonl wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/refcoco%2B/refcoco%2B_testA.jsonl wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/refcoco%2B/refcoco%2B_testB.jsonl cd ../.. ```
Data Preparation ```bash checkpoint=/PATH/TO/CHECKPOINT for ds in "refcoco+_val" "refcoco+_testA" "refcoco+_testB" python -m torch.distributed.launch --use-env \ --nproc_per_node ${NPROC_PER_NODE:-8} \ --nnodes ${WORLD_SIZE:-1} \ --node_rank ${RANK:-0} \ --master_addr ${MASTER_ADDR:-127.0.0.1} \ --master_port ${MASTER_PORT:-12345} \ evaluate_grounding.py \ --checkpoint $checkpoint \ --dataset $ds \ --batch-size 8 \ --num-workers 2 ```
### RefCOCOg
Data Preparation ```bash mkdir -p data/refcocog && data/refcocog # download converted files wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/refcocog/refcocog_val.jsonl wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/refcocog/refcocog_test.jsonl cd ../.. ```
Evaluate ```bash checkpoint=/PATH/TO/CHECKPOINT for ds in "refcocog_val" "refcocog_test" python -m torch.distributed.launch --use-env \ --nproc_per_node ${NPROC_PER_NODE:-8} \ --nnodes ${WORLD_SIZE:-1} \ --node_rank ${RANK:-0} \ --master_addr ${MASTER_ADDR:-127.0.0.1} \ --master_port ${MASTER_PORT:-12345} \ evaluate_grounding.py \ --checkpoint $checkpoint \ --dataset $ds \ --batch-size 8 \ --num-workers 2 ```