# MMBench Evaluation ## Data ```bash /cpfs01/shared/public/shusheng.yss/workspace/23082502_qwenvl_eval_test/eval_mm/data/mmbench ``` ## Dev ```bash checkpoint=/PATH/TO/CHECKPOINT ds=mmbench_dev_20230712 python -m torch.distributed.launch --use-env \ --nproc_per_node ${NPROC_PER_NODE:-8} \ --nnodes ${WORLD_SIZE:-1} \ --node_rank ${RANK:-0} \ --master_addr ${MASTER_ADDR:-127.0.0.1} \ --master_port ${MASTER_PORT:-12345} \ evaluate_multiple_choice_mmbench.py \ --checkpoint $checkpoint \ --dataset $ds \ --batch-size 2 \ --num-workers 2 # the results will be saved to mmbench_dev_20230712.json # without consistency constrain python mmbench_evaluation.py # with consistency constrain python mmbench_evaluation_tricky.py ``` ## Test ```bash checkpoint=/PATH/TO/CHECKPOINT ds=mmbench_test_20230712 python -m torch.distributed.launch --use-env \ --nproc_per_node ${NPROC_PER_NODE:-8} \ --nnodes ${WORLD_SIZE:-1} \ --node_rank ${RANK:-0} \ --master_addr ${MASTER_ADDR:-127.0.0.1} \ --master_port ${MASTER_PORT:-12345} \ evaluate_multiple_choice_mmbench.py \ --checkpoint $checkpoint \ --dataset $ds \ --batch-size 2 \ --num-workers 2 # the results will be saved to mmbench_test_20230712.json # convert to submission format with consistency constrain python mmbench_predict_to_submission.py ```