训练文本生成
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

88 lines
3.0 KiB

# coding=utf-8
# Implements stream chat in command line for fine-tuned models.
# Usage: python cli_demo.py --model_name_or_path path_to_model --checkpoint_dir path_to_checkpoint
from utils import (
load_pretrained,
prepare_infer_args,
get_logits_processor
)
from threading import Thread
from transformers import TextIteratorStreamer
def main():
model_args, data_args, finetuning_args = prepare_infer_args()
model_name = "BLOOM" if "bloom" in model_args.model_name_or_path else "LLaMA"
model, tokenizer = load_pretrained(model_args, finetuning_args)
def format_example_alpaca(query, history):
prompt = "Below is an instruction that describes a task. "
prompt += "Write a response that appropriately completes the request.\n"
prompt += "Instruction:\n"
for old_query, response in history:
prompt += "Human: {}\nAssistant: {}\n".format(old_query, response)
prompt += "Human: {}\nAssistant:".format(query)
return prompt
def format_example_ziya(query, history):
prompt = ""
for old_query, response in history:
prompt += "<human>: {}\n<bot>: {}\n".format(old_query, response)
prompt += "<human>: {}\n<bot>:".format(query)
return prompt
format_example = format_example_alpaca if data_args.prompt_template == "alpaca" else format_example_ziya
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
def predict_and_print(query, history: list):
input_ids = tokenizer([format_example(query, history)], return_tensors="pt")["input_ids"]
input_ids = input_ids.to(model.device)
gen_kwargs = {
"input_ids": input_ids,
"do_sample": True,
"top_p": 0.7,
"temperature": 0.95,
"num_beams": 1,
"max_new_tokens": 512,
"repetition_penalty": 1.0,
"logits_processor": get_logits_processor(),
"streamer": streamer
}
thread = Thread(target=model.generate, kwargs=gen_kwargs)
thread.start()
response = ""
print("{}: ".format(model_name), end="")
for new_text in streamer:
print(new_text, end="", flush=True)
response += new_text
print()
history = history + [(query, response)]
return history
history = []
print("欢迎使用 {} 模型,输入内容即可对话,clear清空对话历史,stop终止程序".format(model_name))
while True:
try:
query = input("\nInput: ")
except UnicodeDecodeError:
print("Detected decoding error at the inputs, please set the terminal encoding to utf-8.")
continue
except Exception:
raise
if query.strip() == "stop":
break
if query.strip() == "clear":
history = []
print("History has been removed.")
continue
history = predict_and_print(query, history)
if __name__ == "__main__":
main()