You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
88 lines
3.0 KiB
88 lines
3.0 KiB
# coding=utf-8
|
|
# Implements stream chat in command line for fine-tuned models.
|
|
# Usage: python cli_demo.py --model_name_or_path path_to_model --checkpoint_dir path_to_checkpoint
|
|
|
|
|
|
from utils import (
|
|
load_pretrained,
|
|
prepare_infer_args,
|
|
get_logits_processor
|
|
)
|
|
from threading import Thread
|
|
from transformers import TextIteratorStreamer
|
|
|
|
|
|
def main():
|
|
|
|
model_args, data_args, finetuning_args = prepare_infer_args()
|
|
model_name = "BLOOM" if "bloom" in model_args.model_name_or_path else "LLaMA"
|
|
model, tokenizer = load_pretrained(model_args, finetuning_args)
|
|
|
|
def format_example_alpaca(query, history):
|
|
prompt = "Below is an instruction that describes a task. "
|
|
prompt += "Write a response that appropriately completes the request.\n"
|
|
prompt += "Instruction:\n"
|
|
for old_query, response in history:
|
|
prompt += "Human: {}\nAssistant: {}\n".format(old_query, response)
|
|
prompt += "Human: {}\nAssistant:".format(query)
|
|
return prompt
|
|
|
|
def format_example_ziya(query, history):
|
|
prompt = ""
|
|
for old_query, response in history:
|
|
prompt += "<human>: {}\n<bot>: {}\n".format(old_query, response)
|
|
prompt += "<human>: {}\n<bot>:".format(query)
|
|
return prompt
|
|
|
|
format_example = format_example_alpaca if data_args.prompt_template == "alpaca" else format_example_ziya
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
|
|
|
def predict_and_print(query, history: list):
|
|
input_ids = tokenizer([format_example(query, history)], return_tensors="pt")["input_ids"]
|
|
input_ids = input_ids.to(model.device)
|
|
gen_kwargs = {
|
|
"input_ids": input_ids,
|
|
"do_sample": True,
|
|
"top_p": 0.7,
|
|
"temperature": 0.95,
|
|
"num_beams": 1,
|
|
"max_new_tokens": 512,
|
|
"repetition_penalty": 1.0,
|
|
"logits_processor": get_logits_processor(),
|
|
"streamer": streamer
|
|
}
|
|
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
|
thread.start()
|
|
response = ""
|
|
print("{}: ".format(model_name), end="")
|
|
for new_text in streamer:
|
|
print(new_text, end="", flush=True)
|
|
response += new_text
|
|
print()
|
|
history = history + [(query, response)]
|
|
return history
|
|
|
|
history = []
|
|
print("欢迎使用 {} 模型,输入内容即可对话,clear清空对话历史,stop终止程序".format(model_name))
|
|
while True:
|
|
try:
|
|
query = input("\nInput: ")
|
|
except UnicodeDecodeError:
|
|
print("Detected decoding error at the inputs, please set the terminal encoding to utf-8.")
|
|
continue
|
|
except Exception:
|
|
raise
|
|
|
|
if query.strip() == "stop":
|
|
break
|
|
|
|
if query.strip() == "clear":
|
|
history = []
|
|
print("History has been removed.")
|
|
continue
|
|
|
|
history = predict_and_print(query, history)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|