# LLaMA Efficient Tuning 1. Download the weights of the LLaMA models. 2. Convert them to HF format using this [script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py) ```python python convert_llama_weights_to_hf.py \ --input_dir path_to_llama_weights --model_size 7B --output_dir llama_7b ``` 3. Fine-tune the LLaMA models. ```bash CUDA_VISIBLE_DEVICES=0 python src/train_sft.py \ --model_name_or_path llama_7b \ --do_train \ --dataset alpaca_gpt4_zh \ --finetuning_type lora \ --output_dir path_to_sft_checkpoint \ --overwrite_cache \ --per_device_train_batch_size 2 \ --gradient_accumulation_steps 2 \ --lr_scheduler_type cosine \ --logging_steps 10 \ --save_steps 100 \ --learning_rate 1e-5 \ --num_train_epochs 1.0 \ --fp16 ```