# coding=utf-8 # Implements stream chat in command line for fine-tuned models. # Usage: python cli_demo.py --checkpoint_dir path_to_checkpoint import torch from utils import ModelArguments, FinetuningArguments, load_pretrained, get_logits_processor from transformers import HfArgumentParser def main(): parser = HfArgumentParser((ModelArguments, FinetuningArguments)) model_args, finetuning_args = parser.parse_args_into_dataclasses() model_name = "BLOOM" if "bloom" in model_args.model_name_or_path else "LLaMA" model, tokenizer = load_pretrained(model_args, finetuning_args) if torch.cuda.device_count() > 1: from accelerate import dispatch_model, infer_auto_device_map device_map = infer_auto_device_map(model) model = dispatch_model(model, device_map) else: model = model.cuda() model.eval() def format_example(query): prompt = "Below is an instruction that describes a task. " prompt += "Write a response that appropriately completes the request.\n" prompt += "Instruction:\nHuman: {}\nAssistant: ".format(query) return prompt def predict(query, history: list): input_ids = tokenizer([format_example(query)], return_tensors="pt")["input_ids"] input_ids = input_ids.to(model.device) gen_kwargs = { "do_sample": True, "top_p": 0.7, "temperature": 0.95, "num_beams": 1, "max_new_tokens": 256, "repetition_penalty": 1.5, "logits_processor": get_logits_processor() } with torch.no_grad(): generation_output = model.generate(input_ids=input_ids, **gen_kwargs) outputs = generation_output.tolist()[0][len(input_ids[0]):] response = tokenizer.decode(outputs, skip_special_tokens=True) history = history + [(query, response)] return response, history history = [] print("欢迎使用 {} 模型,输入内容即可对话,clear清空对话历史,stop终止程序".format(model_name)) while True: try: query = input("\nInput: ") except UnicodeDecodeError: print("Detected decoding error at the inputs, please set the terminal encoding to utf-8.") continue except Exception: raise if query.strip() == "stop": break if query.strip() == "clear": history = [] continue response, history = predict(query, history) print("{}:".format(model_name), response) if __name__ == "__main__": main()