# coding=utf-8 # Implements stream chat in command line for fine-tuned models. # Usage: python cli_demo.py --checkpoint_dir path_to_checkpoint from utils import ( load_pretrained, prepare_infer_args, get_logits_processor ) from threading import Thread from transformers import TextIteratorStreamer def main(): model_args, data_args, finetuning_args = prepare_infer_args() model_name = "BLOOM" if "bloom" in model_args.model_name_or_path else "LLaMA" model, tokenizer = load_pretrained(model_args, finetuning_args) def format_example_alpaca(query, history): prompt = "Below is an instruction that describes a task. " prompt += "Write a response that appropriately completes the request.\n" prompt += "Instruction:\n" for old_query, response in history: prompt += "Human: {}\nAssistant: {}\n".format(old_query, response) prompt += "Human: {}\nAssistant:".format(query) return prompt def format_example_ziya(query, history): prompt = "" for old_query, response in history: prompt += ": {}\n: {}\n".format(old_query, response) prompt += ": {}\n:".format(query) return prompt format_example = format_example_alpaca if data_args.prompt_template == "alpaca" else format_example_ziya streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) def predict_and_print(query, history: list): input_ids = tokenizer([format_example(query, history)], return_tensors="pt")["input_ids"] input_ids = input_ids.to(model.device) gen_kwargs = { "input_ids": input_ids, "do_sample": True, "top_p": 0.7, "temperature": 0.95, "num_beams": 1, "max_new_tokens": 512, "repetition_penalty": 1.0, "logits_processor": get_logits_processor(), "streamer": streamer } thread = Thread(target=model.generate, kwargs=gen_kwargs) thread.start() response = "" print("{}: ".format(model_name), end="") for new_text in streamer: print(new_text, end="", flush=True) response += new_text print() history = history + [(query, response)] return history history = [] print("欢迎使用 {} 模型,输入内容即可对话,clear清空对话历史,stop终止程序".format(model_name)) while True: try: query = input("\nInput: ") except UnicodeDecodeError: print("Detected decoding error at the inputs, please set the terminal encoding to utf-8.") continue except Exception: raise if query.strip() == "stop": break if query.strip() == "clear": history = [] print("History has been removed.") continue history = predict_and_print(query, history) if __name__ == "__main__": main()