Browse Source

implement stream generating

main
hiyouga 2 years ago
parent
commit
fe1d930816
  1. 27
      src/cli_demo.py
  2. 3
      src/utils/other.py
  3. 24
      src/web_demo.py

27
src/cli_demo.py

@ -3,12 +3,13 @@
# Usage: python cli_demo.py --checkpoint_dir path_to_checkpoint # Usage: python cli_demo.py --checkpoint_dir path_to_checkpoint
import torch
from utils import ( from utils import (
load_pretrained, load_pretrained,
prepare_infer_args, prepare_infer_args,
get_logits_processor get_logits_processor
) )
from threading import Thread
from transformers import TextIteratorStreamer
def main(): def main():
@ -34,25 +35,32 @@ def main():
return prompt return prompt
format_example = format_example_alpaca if data_args.prompt_template == "alpaca" else format_example_ziya format_example = format_example_alpaca if data_args.prompt_template == "alpaca" else format_example_ziya
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
def predict(query, history: list): def predict_and_print(query, history: list):
input_ids = tokenizer([format_example(query, history)], return_tensors="pt")["input_ids"] input_ids = tokenizer([format_example(query, history)], return_tensors="pt")["input_ids"]
input_ids = input_ids.to(model.device) input_ids = input_ids.to(model.device)
gen_kwargs = { gen_kwargs = {
"input_ids": input_ids,
"do_sample": True, "do_sample": True,
"top_p": 0.7, "top_p": 0.7,
"temperature": 0.95, "temperature": 0.95,
"num_beams": 1, "num_beams": 1,
"max_new_tokens": 256, "max_new_tokens": 256,
"repetition_penalty": 1.0, "repetition_penalty": 1.0,
"logits_processor": get_logits_processor() "logits_processor": get_logits_processor(),
"streamer": streamer
} }
with torch.no_grad(): thread = Thread(target=model.generate, kwargs=gen_kwargs)
generation_output = model.generate(input_ids=input_ids, **gen_kwargs) thread.start()
outputs = generation_output.tolist()[0][len(input_ids[0]):] response = ""
response = tokenizer.decode(outputs, skip_special_tokens=True) print("{}: ".format(model_name), end="")
for new_text in streamer:
print(new_text, end="", flush=True)
response += new_text
print()
history = history + [(query, response)] history = history + [(query, response)]
return response, history return history
history = [] history = []
print("欢迎使用 {} 模型,输入内容即可对话,clear清空对话历史,stop终止程序".format(model_name)) print("欢迎使用 {} 模型,输入内容即可对话,clear清空对话历史,stop终止程序".format(model_name))
@ -73,8 +81,7 @@ def main():
print("History has been removed.") print("History has been removed.")
continue continue
response, history = predict(query, history) history = predict_and_print(query, history)
print("{}:".format(model_name), response)
if __name__ == "__main__": if __name__ == "__main__":

3
src/utils/other.py

@ -52,13 +52,12 @@ class AverageMeter:
# Avoid runtime error in model.generate(do_sample=True). # Avoid runtime error in model.generate(do_sample=True).
# Borrowed from: https://huggingface.co/THUDM/chatglm-6b/blob/658202d88ac4bb782b99e99ac3adff58b4d0b813/modeling_chatglm.py#L54
class InvalidScoreLogitsProcessor(LogitsProcessor): class InvalidScoreLogitsProcessor(LogitsProcessor):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
if torch.isnan(scores).any() or torch.isinf(scores).any(): if torch.isnan(scores).any() or torch.isinf(scores).any():
scores.zero_() scores.zero_()
scores[..., 5] = 5e4 scores[:, 0] = 1.0
return scores return scores

24
src/web_demo.py

@ -3,11 +3,12 @@
# Usage: python web_demo.py --checkpoint_dir path_to_checkpoint # Usage: python web_demo.py --checkpoint_dir path_to_checkpoint
import torch
import mdtex2html import mdtex2html
import gradio as gr import gradio as gr
from threading import Thread
from utils import load_pretrained, prepare_infer_args, get_logits_processor from utils import load_pretrained, prepare_infer_args, get_logits_processor
from transformers import TextIteratorStreamer
from transformers.utils.versions import require_version from transformers.utils.versions import require_version
@ -83,6 +84,7 @@ def format_example_ziya(query, history):
format_example = format_example_alpaca if data_args.prompt_template == "alpaca" else format_example_ziya format_example = format_example_alpaca if data_args.prompt_template == "alpaca" else format_example_ziya
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
def predict(input, chatbot, max_length, top_p, temperature, history): def predict(input, chatbot, max_length, top_p, temperature, history):
@ -97,15 +99,17 @@ def predict(input, chatbot, max_length, top_p, temperature, history):
"num_beams": 1, "num_beams": 1,
"max_length": max_length, "max_length": max_length,
"repetition_penalty": 1.0, "repetition_penalty": 1.0,
"logits_processor": get_logits_processor() "logits_processor": get_logits_processor(),
"streamer": streamer
} }
with torch.no_grad(): thread = Thread(target=model.generate, kwargs=gen_kwargs)
generation_output = model.generate(input_ids=input_ids, **gen_kwargs) thread.start()
outputs = generation_output.tolist()[0][len(input_ids[0]):] response = ""
response = tokenizer.decode(outputs, skip_special_tokens=True) for new_text in streamer:
history = history + [(input, response)] response += new_text
chatbot[-1] = (parse_text(input), parse_text(response)) history = history + [(input, response)]
yield chatbot, history chatbot[-1] = (parse_text(input), parse_text(response))
yield chatbot, history
def reset_user_input(): def reset_user_input():
@ -129,7 +133,7 @@ with gr.Blocks() as demo:
submitBtn = gr.Button("Submit", variant="primary") submitBtn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1): with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History") emptyBtn = gr.Button("Clear History")
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True) max_length = gr.Slider(0, 2048, value=1024, step=1.0, label="Maximum length", interactive=True)
top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True) top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True) temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True)

Loading…
Cancel
Save