
2 changed files with 189 additions and 7 deletions
@ -1,29 +1,197 @@ |
|||
# LLaMA Efficient Tuning |
|||
|
|||
 |
|||
 |
|||
 |
|||
 |
|||
|
|||
## Requirement |
|||
|
|||
- Python 3.8+ and PyTorch 1.13.1 |
|||
- 🤗Transformers, Datasets, Accelerate, PEFT and TRL |
|||
- protobuf, cpm_kernels and sentencepiece |
|||
- jieba, rouge_chinese and nltk (used at evaluation) |
|||
- gradio and mdtex2html (used in web_demo.py) |
|||
|
|||
And **powerful GPUs**! |
|||
|
|||
## Getting Started |
|||
|
|||
### Data Preparation (optional) |
|||
|
|||
Please refer to `data/example_dataset` for checking the details about the format of dataset files. You can either use a single `.json` file or a [dataset loading script](https://huggingface.co/docs/datasets/dataset_script) with multiple files to create a custom dataset. |
|||
|
|||
Note: please update `data/dataset_info.json` to use your custom dataset. About the format of this file, please refer to `data/README.md`. |
|||
|
|||
### Dependence Installation (optional) |
|||
|
|||
```bash |
|||
git clone https://github.com/hiyouga/LLaMA-Efficient-Tuning.git |
|||
conda create -n llama_etuning python=3.10 |
|||
conda activate llama_etuning |
|||
cd LLaMA-Efficient-Tuning |
|||
pip install -r requirements.txt |
|||
``` |
|||
|
|||
### LLaMA Weights Preparation |
|||
|
|||
1. Download the weights of the LLaMA models. |
|||
2. Convert them to HF format using this [script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py) |
|||
|
|||
```python |
|||
python convert_llama_weights_to_hf.py \ |
|||
--input_dir path_to_llama_weights --model_size 7B --output_dir llama_7b |
|||
--input_dir path_to_llama_weights --model_size 7B --output_dir path_to_llama_model |
|||
``` |
|||
|
|||
### (Continually) Pre-Training |
|||
|
|||
```bash |
|||
CUDA_VISIBLE_DEVICES=0 python src/train_pt.py \ |
|||
--model_name_or_path path_to_llama_model \ |
|||
--do_train \ |
|||
--dataset wiki_demo \ |
|||
--finetuning_type lora \ |
|||
--output_dir path_to_pt_checkpoint \ |
|||
--overwrite_cache \ |
|||
--per_device_train_batch_size 4 \ |
|||
--gradient_accumulation_steps 4 \ |
|||
--lr_scheduler_type cosine \ |
|||
--logging_steps 10 \ |
|||
--save_steps 1000 \ |
|||
--learning_rate 5e-5 \ |
|||
--num_train_epochs 3.0 \ |
|||
--plot_loss \ |
|||
--fp16 |
|||
``` |
|||
|
|||
3. Fine-tune the LLaMA models. |
|||
### Supervised Fine-Tuning |
|||
|
|||
```bash |
|||
CUDA_VISIBLE_DEVICES=0 python src/train_sft.py \ |
|||
--model_name_or_path llama_7b \ |
|||
--model_name_or_path path_to_llama_model \ |
|||
--do_train \ |
|||
--dataset alpaca_gpt4_zh \ |
|||
--dataset alpaca_gpt4_en \ |
|||
--finetuning_type lora \ |
|||
--checkpoint_dir path_to_pt_checkpoint \ |
|||
--output_dir path_to_sft_checkpoint \ |
|||
--overwrite_cache \ |
|||
--per_device_train_batch_size 2 \ |
|||
--gradient_accumulation_steps 2 \ |
|||
--per_device_train_batch_size 4 \ |
|||
--gradient_accumulation_steps 4 \ |
|||
--lr_scheduler_type cosine \ |
|||
--logging_steps 10 \ |
|||
--save_steps 1000 \ |
|||
--learning_rate 5e-5 \ |
|||
--num_train_epochs 3.0 \ |
|||
--resume_lora_training False \ |
|||
--plot_loss \ |
|||
--fp16 |
|||
``` |
|||
|
|||
### Reward Model Training |
|||
|
|||
```bash |
|||
CUDA_VISIBLE_DEVICES=0 python src/train_rm.py \ |
|||
--model_name_or_path path_to_llama_model \ |
|||
--do_train \ |
|||
--dataset comparison_gpt4_en \ |
|||
--finetuning_type lora \ |
|||
--checkpoint_dir path_to_pt_checkpoint \ |
|||
--output_dir path_to_rm_checkpoint \ |
|||
--per_device_train_batch_size 4 \ |
|||
--gradient_accumulation_steps 4 \ |
|||
--lr_scheduler_type cosine \ |
|||
--logging_steps 10 \ |
|||
--save_steps 100 \ |
|||
--save_steps 1000 \ |
|||
--learning_rate 1e-5 \ |
|||
--num_train_epochs 1.0 \ |
|||
--plot_loss \ |
|||
--fp16 |
|||
``` |
|||
|
|||
### PPO Training (RLHF) |
|||
|
|||
```bash |
|||
CUDA_VISIBLE_DEVICES=0 python src/train_ppo.py \ |
|||
--model_name_or_path path_to_llama_model \ |
|||
--do_train \ |
|||
--dataset alpaca_gpt4_en \ |
|||
--finetuning_type lora \ |
|||
--checkpoint_dir path_to_pt_checkpoint,path_to_sft_checkpoint \ |
|||
--reward_model path_to_rm_checkpoint \ |
|||
--output_dir path_to_ppo_checkpoint \ |
|||
--per_device_train_batch_size 2 \ |
|||
--gradient_accumulation_steps 4 \ |
|||
--lr_scheduler_type cosine \ |
|||
--logging_steps 10 \ |
|||
--save_steps 1000 \ |
|||
--learning_rate 1e-5 \ |
|||
--num_train_epochs 1.0 \ |
|||
--resume_lora_training False \ |
|||
--plot_loss |
|||
``` |
|||
|
|||
### Distributed Training |
|||
|
|||
```bash |
|||
accelerate config # configure the environment |
|||
accelerate launch src/train_XX.py # arguments (same as above) |
|||
``` |
|||
|
|||
### Evaluation (BLEU and ROUGE_CHINESE) |
|||
|
|||
```bash |
|||
CUDA_VISIBLE_DEVICES=0 python src/train_sft.py \ |
|||
--model_name_or_path path_to_llama_model \ |
|||
--do_eval \ |
|||
--dataset alpaca_gpt4_en \ |
|||
--checkpoint_dir path_to_checkpoint \ |
|||
--output_dir path_to_eval_result \ |
|||
--per_device_eval_batch_size 8 \ |
|||
--max_samples 50 \ |
|||
--predict_with_generate |
|||
``` |
|||
|
|||
### CLI Demo |
|||
|
|||
```bash |
|||
python src/cli_demo.py \ |
|||
--model_name_or_path path_to_llama_model \ |
|||
--checkpoint_dir path_to_checkpoint |
|||
``` |
|||
|
|||
### Web Demo |
|||
```bash |
|||
python src/web_demo.py \ |
|||
--model_name_or_path path_to_llama_model \ |
|||
--checkpoint_dir path_to_checkpoint |
|||
``` |
|||
|
|||
### Export model |
|||
|
|||
```bash |
|||
python src/export_model.py \ |
|||
--model_name_or_path path_to_llama_model \ |
|||
--checkpoint_dir path_to_checkpoint \ |
|||
--output_dir path_to_export |
|||
``` |
|||
|
|||
## License |
|||
|
|||
This repository is licensed under the [Apache-2.0 License](LICENSE). Please follow the [Model Card](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) to use the LLaMA model. |
|||
|
|||
## Citation |
|||
|
|||
If this work is helpful, please cite as: |
|||
|
|||
```bibtex |
|||
@Misc{llama-efficient-tuning, |
|||
title = {LLaMA Efficient Tuning}, |
|||
author = {hiyouga}, |
|||
howpublished = {\url{https://github.com/hiyouga/LLaMA-Efficient-Tuning}}, |
|||
year = {2023} |
|||
} |
|||
``` |
|||
|
|||
## Acknowledgement |
|||
|
|||
This repo is a sibling of [ChatGLM-Efficient-Tuning](https://github.com/hiyouga/ChatGLM-Efficient-Tuning). They share a similar code structure of efficient tuning on large language models. |
|||
|
@ -0,0 +1,14 @@ |
|||
torch>=1.13.1 |
|||
protobuf |
|||
cpm_kernels |
|||
sentencepiece |
|||
transformers>=4.27.4 |
|||
datasets>=2.10.0 |
|||
accelerate>=0.18.0 |
|||
peft>=0.3.0 |
|||
trl>=0.4.1 |
|||
jieba |
|||
rouge_chinese |
|||
nltk |
|||
gradio |
|||
mdtex2html |
Loading…
Reference in new issue