
2 changed files with 189 additions and 7 deletions
@ -1,29 +1,197 @@ |
|||||
# LLaMA Efficient Tuning |
# LLaMA Efficient Tuning |
||||
|
|
||||
|
 |
||||
|
 |
||||
|
 |
||||
|
 |
||||
|
|
||||
|
## Requirement |
||||
|
|
||||
|
- Python 3.8+ and PyTorch 1.13.1 |
||||
|
- 🤗Transformers, Datasets, Accelerate, PEFT and TRL |
||||
|
- protobuf, cpm_kernels and sentencepiece |
||||
|
- jieba, rouge_chinese and nltk (used at evaluation) |
||||
|
- gradio and mdtex2html (used in web_demo.py) |
||||
|
|
||||
|
And **powerful GPUs**! |
||||
|
|
||||
|
## Getting Started |
||||
|
|
||||
|
### Data Preparation (optional) |
||||
|
|
||||
|
Please refer to `data/example_dataset` for checking the details about the format of dataset files. You can either use a single `.json` file or a [dataset loading script](https://huggingface.co/docs/datasets/dataset_script) with multiple files to create a custom dataset. |
||||
|
|
||||
|
Note: please update `data/dataset_info.json` to use your custom dataset. About the format of this file, please refer to `data/README.md`. |
||||
|
|
||||
|
### Dependence Installation (optional) |
||||
|
|
||||
|
```bash |
||||
|
git clone https://github.com/hiyouga/LLaMA-Efficient-Tuning.git |
||||
|
conda create -n llama_etuning python=3.10 |
||||
|
conda activate llama_etuning |
||||
|
cd LLaMA-Efficient-Tuning |
||||
|
pip install -r requirements.txt |
||||
|
``` |
||||
|
|
||||
|
### LLaMA Weights Preparation |
||||
|
|
||||
1. Download the weights of the LLaMA models. |
1. Download the weights of the LLaMA models. |
||||
2. Convert them to HF format using this [script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py) |
2. Convert them to HF format using this [script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py) |
||||
|
|
||||
```python |
```python |
||||
python convert_llama_weights_to_hf.py \ |
python convert_llama_weights_to_hf.py \ |
||||
--input_dir path_to_llama_weights --model_size 7B --output_dir llama_7b |
--input_dir path_to_llama_weights --model_size 7B --output_dir path_to_llama_model |
||||
|
``` |
||||
|
|
||||
|
### (Continually) Pre-Training |
||||
|
|
||||
|
```bash |
||||
|
CUDA_VISIBLE_DEVICES=0 python src/train_pt.py \ |
||||
|
--model_name_or_path path_to_llama_model \ |
||||
|
--do_train \ |
||||
|
--dataset wiki_demo \ |
||||
|
--finetuning_type lora \ |
||||
|
--output_dir path_to_pt_checkpoint \ |
||||
|
--overwrite_cache \ |
||||
|
--per_device_train_batch_size 4 \ |
||||
|
--gradient_accumulation_steps 4 \ |
||||
|
--lr_scheduler_type cosine \ |
||||
|
--logging_steps 10 \ |
||||
|
--save_steps 1000 \ |
||||
|
--learning_rate 5e-5 \ |
||||
|
--num_train_epochs 3.0 \ |
||||
|
--plot_loss \ |
||||
|
--fp16 |
||||
``` |
``` |
||||
|
|
||||
3. Fine-tune the LLaMA models. |
### Supervised Fine-Tuning |
||||
|
|
||||
```bash |
```bash |
||||
CUDA_VISIBLE_DEVICES=0 python src/train_sft.py \ |
CUDA_VISIBLE_DEVICES=0 python src/train_sft.py \ |
||||
--model_name_or_path llama_7b \ |
--model_name_or_path path_to_llama_model \ |
||||
--do_train \ |
--do_train \ |
||||
--dataset alpaca_gpt4_zh \ |
--dataset alpaca_gpt4_en \ |
||||
--finetuning_type lora \ |
--finetuning_type lora \ |
||||
|
--checkpoint_dir path_to_pt_checkpoint \ |
||||
--output_dir path_to_sft_checkpoint \ |
--output_dir path_to_sft_checkpoint \ |
||||
--overwrite_cache \ |
--overwrite_cache \ |
||||
--per_device_train_batch_size 2 \ |
--per_device_train_batch_size 4 \ |
||||
--gradient_accumulation_steps 2 \ |
--gradient_accumulation_steps 4 \ |
||||
|
--lr_scheduler_type cosine \ |
||||
|
--logging_steps 10 \ |
||||
|
--save_steps 1000 \ |
||||
|
--learning_rate 5e-5 \ |
||||
|
--num_train_epochs 3.0 \ |
||||
|
--resume_lora_training False \ |
||||
|
--plot_loss \ |
||||
|
--fp16 |
||||
|
``` |
||||
|
|
||||
|
### Reward Model Training |
||||
|
|
||||
|
```bash |
||||
|
CUDA_VISIBLE_DEVICES=0 python src/train_rm.py \ |
||||
|
--model_name_or_path path_to_llama_model \ |
||||
|
--do_train \ |
||||
|
--dataset comparison_gpt4_en \ |
||||
|
--finetuning_type lora \ |
||||
|
--checkpoint_dir path_to_pt_checkpoint \ |
||||
|
--output_dir path_to_rm_checkpoint \ |
||||
|
--per_device_train_batch_size 4 \ |
||||
|
--gradient_accumulation_steps 4 \ |
||||
--lr_scheduler_type cosine \ |
--lr_scheduler_type cosine \ |
||||
--logging_steps 10 \ |
--logging_steps 10 \ |
||||
--save_steps 100 \ |
--save_steps 1000 \ |
||||
--learning_rate 1e-5 \ |
--learning_rate 1e-5 \ |
||||
--num_train_epochs 1.0 \ |
--num_train_epochs 1.0 \ |
||||
|
--plot_loss \ |
||||
--fp16 |
--fp16 |
||||
``` |
``` |
||||
|
|
||||
|
### PPO Training (RLHF) |
||||
|
|
||||
|
```bash |
||||
|
CUDA_VISIBLE_DEVICES=0 python src/train_ppo.py \ |
||||
|
--model_name_or_path path_to_llama_model \ |
||||
|
--do_train \ |
||||
|
--dataset alpaca_gpt4_en \ |
||||
|
--finetuning_type lora \ |
||||
|
--checkpoint_dir path_to_pt_checkpoint,path_to_sft_checkpoint \ |
||||
|
--reward_model path_to_rm_checkpoint \ |
||||
|
--output_dir path_to_ppo_checkpoint \ |
||||
|
--per_device_train_batch_size 2 \ |
||||
|
--gradient_accumulation_steps 4 \ |
||||
|
--lr_scheduler_type cosine \ |
||||
|
--logging_steps 10 \ |
||||
|
--save_steps 1000 \ |
||||
|
--learning_rate 1e-5 \ |
||||
|
--num_train_epochs 1.0 \ |
||||
|
--resume_lora_training False \ |
||||
|
--plot_loss |
||||
|
``` |
||||
|
|
||||
|
### Distributed Training |
||||
|
|
||||
|
```bash |
||||
|
accelerate config # configure the environment |
||||
|
accelerate launch src/train_XX.py # arguments (same as above) |
||||
|
``` |
||||
|
|
||||
|
### Evaluation (BLEU and ROUGE_CHINESE) |
||||
|
|
||||
|
```bash |
||||
|
CUDA_VISIBLE_DEVICES=0 python src/train_sft.py \ |
||||
|
--model_name_or_path path_to_llama_model \ |
||||
|
--do_eval \ |
||||
|
--dataset alpaca_gpt4_en \ |
||||
|
--checkpoint_dir path_to_checkpoint \ |
||||
|
--output_dir path_to_eval_result \ |
||||
|
--per_device_eval_batch_size 8 \ |
||||
|
--max_samples 50 \ |
||||
|
--predict_with_generate |
||||
|
``` |
||||
|
|
||||
|
### CLI Demo |
||||
|
|
||||
|
```bash |
||||
|
python src/cli_demo.py \ |
||||
|
--model_name_or_path path_to_llama_model \ |
||||
|
--checkpoint_dir path_to_checkpoint |
||||
|
``` |
||||
|
|
||||
|
### Web Demo |
||||
|
```bash |
||||
|
python src/web_demo.py \ |
||||
|
--model_name_or_path path_to_llama_model \ |
||||
|
--checkpoint_dir path_to_checkpoint |
||||
|
``` |
||||
|
|
||||
|
### Export model |
||||
|
|
||||
|
```bash |
||||
|
python src/export_model.py \ |
||||
|
--model_name_or_path path_to_llama_model \ |
||||
|
--checkpoint_dir path_to_checkpoint \ |
||||
|
--output_dir path_to_export |
||||
|
``` |
||||
|
|
||||
|
## License |
||||
|
|
||||
|
This repository is licensed under the [Apache-2.0 License](LICENSE). Please follow the [Model Card](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) to use the LLaMA model. |
||||
|
|
||||
|
## Citation |
||||
|
|
||||
|
If this work is helpful, please cite as: |
||||
|
|
||||
|
```bibtex |
||||
|
@Misc{llama-efficient-tuning, |
||||
|
title = {LLaMA Efficient Tuning}, |
||||
|
author = {hiyouga}, |
||||
|
howpublished = {\url{https://github.com/hiyouga/LLaMA-Efficient-Tuning}}, |
||||
|
year = {2023} |
||||
|
} |
||||
|
``` |
||||
|
|
||||
|
## Acknowledgement |
||||
|
|
||||
|
This repo is a sibling of [ChatGLM-Efficient-Tuning](https://github.com/hiyouga/ChatGLM-Efficient-Tuning). They share a similar code structure of efficient tuning on large language models. |
||||
|
@ -0,0 +1,14 @@ |
|||||
|
torch>=1.13.1 |
||||
|
protobuf |
||||
|
cpm_kernels |
||||
|
sentencepiece |
||||
|
transformers>=4.27.4 |
||||
|
datasets>=2.10.0 |
||||
|
accelerate>=0.18.0 |
||||
|
peft>=0.3.0 |
||||
|
trl>=0.4.1 |
||||
|
jieba |
||||
|
rouge_chinese |
||||
|
nltk |
||||
|
gradio |
||||
|
mdtex2html |
Loading…
Reference in new issue