@ -5,9 +5,65 @@


## Changelog
[23/05/31] Now we support training the BLOOM & BLOOMZ models in this repo. Try `--model_name_or_path bigscience/bloomz-7b1-mt` argument to use the BLOOMZ model.
## Supported Models
- [LLaMA ](https://github.com/facebookresearch/llama ) (7B, 13B, 33B, 65B)
- [BLOOM ](https://huggingface.co/bigscience/bloom ) & [BLOOMZ ](https://huggingface.co/bigscience/bloomz ) (560M, 1.1B, 1.7B, 3B, 7.1B, 176B)
## Supported Training Approach
- [(Continually) pre-training ](https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf )
- Full-parameter training
- Selected-parameter training
- [LoRA ](https://arxiv.org/abs/2106.09685 )
- [Supervised fine-tuning ](https://arxiv.org/abs/2109.01652 )
- Full-parameter training
- Selected-parameter training
- [LoRA ](https://arxiv.org/abs/2106.09685 )
- [RLHF ](https://arxiv.org/abs/2203.02155 )
- [LoRA ](https://arxiv.org/abs/2106.09685 )
## Provided Datasets
- For pre-training:
- [Wiki Demo ](data/wiki_demo.txt )
- For supervised fine-tuning:
- [Stanford Alpaca ](https://github.com/tatsu-lab/stanford_alpaca )
- [Stanford Alpaca (Chinese) ](https://github.com/ymcui/Chinese-LLaMA-Alpaca )
- [GPT-4 Generated Data ](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM )
- [BELLE 2M ](https://huggingface.co/datasets/BelleGroup/train_2M_CN )
- [BELLE 1M ](https://huggingface.co/datasets/BelleGroup/train_1M_CN )
- [BELLE 0.5M ](https://huggingface.co/datasets/BelleGroup/train_0.5M_CN )
- [BELLE Dialogue 0.4M ](https://huggingface.co/datasets/BelleGroup/generated_chat_0.4M )
- [BELLE School Math 0.25M ](https://huggingface.co/datasets/BelleGroup/school_math_0.25M )
- [BELLE Multiturn Chat 0.8M ](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M )
- [Guanaco Dataset ](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset )
- [Firefly 1.1M ](https://huggingface.co/datasets/YeungNLP/firefly-train-1.1M )
- [CodeAlpaca 20k ](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k )
- [Alpaca CoT ](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT )
- [Web QA (Chinese) ](https://huggingface.co/datasets/suolyer/webqa )
- [UltraChat ](https://github.com/thunlp/UltraChat )
- For reward model training:
- [HH-RLHF ](https://huggingface.co/datasets/Anthropic/hh-rlhf )
- [GPT-4 Generated Data ](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM )
- [GPT-4 Generated Data (Chinese) ](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM )
Please refer to [data/README.md ](data/README.md ) for details.
Some datasets require confirmation before using them, so we recommend logging in with your HuggingFace account using these commands.
```bash
pip install --upgrade huggingface_hub
huggingface-cli login
```
## Requirement
- Python 3.8+ and PyTorch 1.13.1
- Python 3.8+ and PyTorch 1.13.1+
- 🤗Transformers, Datasets, Accelerate, PEFT and TRL
- protobuf, cpm_kernels and sentencepiece
- jieba, rouge_chinese and nltk (used at evaluation)
@ -36,10 +92,10 @@ pip install -r requirements.txt
### LLaMA Weights Preparation
1. Download the weights of the LLaMA models.
2. Convert them to HF format using this [script ](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py )
2. Convert them to HF format using the following command.
```python
python convert_llama_weights_to_hf.py \
```bash
python -m transformers.models.llama. convert_llama_weights_to_hf \
--input_dir path_to_llama_weights --model_size 7B --output_dir path_to_llama_model
```
@ -177,7 +233,11 @@ python src/export_model.py \
## License
This repository is licensed under the [Apache-2.0 License ](LICENSE ). Please follow the [Model Card ](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md ) to use the LLaMA model.
This repository is licensed under the [Apache-2.0 License ](LICENSE ).
Please follow the [Model Card ](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md ) to use the LLaMA models.
Please follow the [RAIL License ](https://huggingface.co/spaces/bigscience/license ) to use the BLOOM & BLOOMZ models.
## Citation