|
|
|
# coding=utf-8
|
|
|
|
# Implements several parameter-efficient pre-training method.
|
|
|
|
# This code is inspired by
|
|
|
|
# https://github.com/huggingface/transformers/blob/v4.29.2/examples/pytorch/language-modeling/run_clm.py
|
|
|
|
|
|
|
|
|
|
|
|
import math
|
|
|
|
from utils import (
|
|
|
|
load_pretrained,
|
|
|
|
prepare_args,
|
|
|
|
prepare_data,
|
|
|
|
preprocess_data,
|
|
|
|
DynamicDataCollatorWithPadding,
|
|
|
|
PeftTrainer,
|
|
|
|
LogCallback,
|
|
|
|
plot_loss
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
|
|
|
|
# Prepare pretrained model and dataset
|
|
|
|
model_args, data_args, training_args, finetuning_args = prepare_args(stage="pt")
|
|
|
|
dataset = prepare_data(model_args, data_args)
|
|
|
|
model, tokenizer = load_pretrained(model_args, finetuning_args, training_args.do_train, stage="pt")
|
|
|
|
dataset = preprocess_data(dataset, tokenizer, data_args, training_args, stage="pt")
|
|
|
|
data_collator = DynamicDataCollatorWithPadding(tokenizer, model, data_args.ignore_pad_token_for_loss)
|
|
|
|
|
|
|
|
# Split the dataset
|
|
|
|
if training_args.do_train:
|
|
|
|
if data_args.dev_ratio > 1e-6:
|
|
|
|
dataset = dataset.train_test_split(test_size=data_args.dev_ratio)
|
|
|
|
trainer_kwargs = {"train_dataset": dataset["train"], "eval_dataset": dataset["test"]}
|
|
|
|
else:
|
|
|
|
trainer_kwargs = {"train_dataset": dataset}
|
|
|
|
else: # do_eval or do_predict
|
|
|
|
trainer_kwargs = {"eval_dataset": dataset}
|
|
|
|
|
|
|
|
# Initialize our Trainer
|
|
|
|
trainer = PeftTrainer(
|
|
|
|
finetuning_args=finetuning_args,
|
|
|
|
model=model,
|
|
|
|
args=training_args,
|
|
|
|
tokenizer=tokenizer,
|
|
|
|
data_collator=data_collator,
|
|
|
|
callbacks=[LogCallback()],
|
|
|
|
**trainer_kwargs
|
|
|
|
)
|
|
|
|
|
|
|
|
# Training
|
|
|
|
if training_args.do_train:
|
|
|
|
train_result = trainer.train()
|
|
|
|
trainer.log_metrics("train", train_result.metrics)
|
|
|
|
trainer.save_metrics("train", train_result.metrics)
|
|
|
|
trainer.save_state()
|
|
|
|
trainer.save_model()
|
|
|
|
if trainer.is_world_process_zero() and model_args.plot_loss:
|
|
|
|
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"])
|
|
|
|
|
|
|
|
# Evaluation
|
|
|
|
if training_args.do_eval:
|
|
|
|
metrics = trainer.evaluate(metric_key_prefix="eval")
|
|
|
|
|
|
|
|
try:
|
|
|
|
perplexity = math.exp(metrics["eval_loss"])
|
|
|
|
except OverflowError:
|
|
|
|
perplexity = float("inf")
|
|
|
|
metrics["perplexity"] = perplexity
|
|
|
|
|
|
|
|
trainer.log_metrics("eval", metrics)
|
|
|
|
trainer.save_metrics("eval", metrics)
|
|
|
|
|
|
|
|
|
|
|
|
def _mp_fn(index):
|
|
|
|
# For xla_spawn (TPUs)
|
|
|
|
main()
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|