|
|
|
import os
|
|
|
|
import sys
|
|
|
|
import torch
|
|
|
|
import hashlib
|
|
|
|
from itertools import chain
|
|
|
|
from typing import List, Literal, Optional, Tuple
|
|
|
|
|
|
|
|
import transformers
|
|
|
|
from transformers import (
|
|
|
|
AutoConfig,
|
|
|
|
AutoModelForCausalLM,
|
|
|
|
AutoTokenizer,
|
|
|
|
HfArgumentParser,
|
|
|
|
Seq2SeqTrainingArguments,
|
|
|
|
BitsAndBytesConfig
|
|
|
|
)
|
|
|
|
from transformers.utils import check_min_version
|
|
|
|
from transformers.utils.versions import require_version
|
|
|
|
from transformers.modeling_utils import PreTrainedModel
|
|
|
|
from transformers.tokenization_utils import PreTrainedTokenizer
|
|
|
|
|
|
|
|
import datasets
|
|
|
|
from datasets import Dataset, concatenate_datasets, load_dataset
|
|
|
|
|
|
|
|
from peft import (
|
|
|
|
PeftModel,
|
|
|
|
TaskType,
|
|
|
|
LoraConfig,
|
|
|
|
get_peft_model
|
|
|
|
)
|
|
|
|
|
|
|
|
from peft.utils import CONFIG_NAME
|
|
|
|
|
|
|
|
from trl import AutoModelForCausalLMWithValueHead
|
|
|
|
|
|
|
|
from .config import (
|
|
|
|
ModelArguments,
|
|
|
|
DataTrainingArguments,
|
|
|
|
FinetuningArguments,
|
|
|
|
GeneratingArguments
|
|
|
|
)
|
|
|
|
|
|
|
|
from .template import Template
|
|
|
|
|
|
|
|
from .other import (
|
|
|
|
get_logger,
|
|
|
|
load_trainable_params,
|
|
|
|
load_valuehead_params,
|
|
|
|
print_trainable_params,
|
|
|
|
prepare_model_for_training,
|
|
|
|
IGNORE_INDEX
|
|
|
|
)
|
|
|
|
|
|
|
|
check_min_version("4.29.1")
|
|
|
|
require_version("datasets>=2.12.0", "To fix: pip install datasets>=2.12.0")
|
|
|
|
require_version("accelerate>=0.19.0", "To fix: pip install accelerate>=0.19.0")
|
|
|
|
require_version("peft>=0.3.0", "To fix: pip install peft>=0.3.0")
|
|
|
|
require_version("trl>=0.4.4", "To fix: pip install trl>=0.4.4")
|
|
|
|
|
|
|
|
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
def _init_adapter(
|
|
|
|
model: PreTrainedModel,
|
|
|
|
model_args: ModelArguments,
|
|
|
|
finetuning_args: FinetuningArguments,
|
|
|
|
is_trainable: bool,
|
|
|
|
is_mergeable: bool
|
|
|
|
) -> PreTrainedModel:
|
|
|
|
r"""
|
|
|
|
Initializes the adapters.
|
|
|
|
|
|
|
|
Support full-parameter, freeze and LoRA training.
|
|
|
|
|
|
|
|
Note that the trainable parameters must be cast to float32.
|
|
|
|
"""
|
|
|
|
|
|
|
|
if finetuning_args.finetuning_type == "none" and is_trainable:
|
|
|
|
raise ValueError("You cannot use finetuning_type=none while training.")
|
|
|
|
|
|
|
|
if finetuning_args.finetuning_type == "full":
|
|
|
|
logger.info("Fine-tuning method: Full")
|
|
|
|
model = model.float()
|
|
|
|
|
|
|
|
if finetuning_args.finetuning_type == "freeze":
|
|
|
|
logger.info("Fine-tuning method: Freeze")
|
|
|
|
for name, param in model.named_parameters():
|
|
|
|
if not any(trainable_layer in name for trainable_layer in finetuning_args.trainable_layers):
|
|
|
|
param.requires_grad_(False)
|
|
|
|
else:
|
|
|
|
param.data = param.data.to(torch.float32)
|
|
|
|
|
|
|
|
if model_args.checkpoint_dir is not None:
|
|
|
|
if finetuning_args.finetuning_type != "lora":
|
|
|
|
assert is_mergeable and len(model_args.checkpoint_dir) == 1, "Only LoRA tuning accepts multiple checkpoints."
|
|
|
|
assert load_trainable_params(model, model_args.checkpoint_dir[0]), "Model checkpoint is not correctly loaded."
|
|
|
|
else:
|
|
|
|
assert is_mergeable or len(model_args.checkpoint_dir) == 1, "Quantized model only accepts a single checkpoint."
|
|
|
|
|
|
|
|
if finetuning_args.finetuning_type == "lora":
|
|
|
|
logger.info("Fine-tuning method: LoRA")
|
|
|
|
lastest_checkpoint = None
|
|
|
|
|
|
|
|
if model_args.checkpoint_dir is not None:
|
|
|
|
assert os.path.exists(os.path.join(model_args.checkpoint_dir[0], CONFIG_NAME)), \
|
|
|
|
"The given checkpoint is not a LoRA checkpoint, please specify `--finetuning_type full/freeze` instead."
|
|
|
|
|
|
|
|
if (is_trainable and model_args.resume_lora_training) or (not is_mergeable): # continually train on the lora weights
|
|
|
|
checkpoints_to_merge, lastest_checkpoint = model_args.checkpoint_dir[:-1], model_args.checkpoint_dir[-1]
|
|
|
|
else:
|
|
|
|
checkpoints_to_merge = model_args.checkpoint_dir
|
|
|
|
|
|
|
|
for checkpoint in checkpoints_to_merge:
|
|
|
|
model = PeftModel.from_pretrained(model, checkpoint)
|
|
|
|
model = model.merge_and_unload()
|
|
|
|
|
|
|
|
if len(checkpoints_to_merge) > 0:
|
|
|
|
logger.info("Merged {} model checkpoint(s).".format(len(checkpoints_to_merge)))
|
|
|
|
|
|
|
|
if lastest_checkpoint is not None: # resume lora training or quantized inference
|
|
|
|
model = PeftModel.from_pretrained(model, lastest_checkpoint, is_trainable=is_trainable)
|
|
|
|
|
|
|
|
if is_trainable and lastest_checkpoint is None: # create new lora weights while training
|
|
|
|
lora_config = LoraConfig(
|
|
|
|
task_type=TaskType.CAUSAL_LM,
|
|
|
|
inference_mode=False,
|
|
|
|
r=finetuning_args.lora_rank,
|
|
|
|
lora_alpha=finetuning_args.lora_alpha,
|
|
|
|
lora_dropout=finetuning_args.lora_dropout,
|
|
|
|
target_modules=finetuning_args.lora_target
|
|
|
|
)
|
|
|
|
model = get_peft_model(model, lora_config)
|
|
|
|
|
|
|
|
if model_args.checkpoint_dir is not None:
|
|
|
|
logger.info("Loaded fine-tuned model from checkpoint(s): {}".format(",".join(model_args.checkpoint_dir)))
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def load_pretrained(
|
|
|
|
model_args: ModelArguments,
|
|
|
|
finetuning_args: FinetuningArguments,
|
|
|
|
is_trainable: Optional[bool] = False,
|
|
|
|
stage: Optional[Literal["pt", "sft", "rm", "ppo"]] = "sft"
|
|
|
|
) -> Tuple[PreTrainedModel, PreTrainedTokenizer]:
|
|
|
|
r"""
|
|
|
|
Loads pretrained model and tokenizer.
|
|
|
|
|
|
|
|
Support both training and inference.
|
|
|
|
"""
|
|
|
|
if (not is_trainable) and model_args.checkpoint_dir is None:
|
|
|
|
logger.warning("Checkpoint is not found at evaluation, load the original model.")
|
|
|
|
finetuning_args = FinetuningArguments(finetuning_type="none")
|
|
|
|
|
|
|
|
assert stage in ["pt", "sft"] or finetuning_args.finetuning_type == "lora", \
|
|
|
|
"RM and PPO training can only be performed with the LoRA method."
|
|
|
|
|
|
|
|
config_kwargs = {
|
|
|
|
"trust_remote_code": True,
|
|
|
|
"cache_dir": model_args.cache_dir,
|
|
|
|
"revision": model_args.model_revision,
|
|
|
|
"use_auth_token": True if model_args.use_auth_token else None,
|
|
|
|
}
|
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
model_args.model_name_or_path,
|
|
|
|
use_fast=model_args.use_fast_tokenizer,
|
|
|
|
padding_side="left",
|
|
|
|
**config_kwargs
|
|
|
|
)
|
|
|
|
tokenizer.pad_token_id = 0 if tokenizer.pad_token_id is None else tokenizer.pad_token_id # set as the <unk> token
|
|
|
|
|
|
|
|
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
|
|
|
|
is_mergeable = True
|
|
|
|
|
|
|
|
# Quantization configurations (using bitsandbytes library).
|
|
|
|
if model_args.quantization_bit is not None:
|
|
|
|
if model_args.quantization_bit == 8:
|
|
|
|
require_version("bitsandbytes>=0.37.0", "To fix: pip install bitsandbytes>=0.37.0")
|
|
|
|
config_kwargs["load_in_8bit"] = True
|
|
|
|
config_kwargs["quantization_config"] = BitsAndBytesConfig(
|
|
|
|
load_in_8bit=True,
|
|
|
|
llm_int8_threshold=6.0
|
|
|
|
)
|
|
|
|
elif model_args.quantization_bit == 4:
|
|
|
|
require_version("bitsandbytes>=0.39.0", "To fix: pip install bitsandbytes>=0.39.0")
|
|
|
|
require_version("transformers>=4.30.1", "To fix: pip install transformers>=4.30.1")
|
|
|
|
require_version("accelerate>=0.20.3", "To fix: pip install accelerate>=0.20.3")
|
|
|
|
require_version("peft>=0.4.0.dev0", "To fix: pip install git+https://github.com/huggingface/peft.git")
|
|
|
|
config_kwargs["load_in_4bit"] = True
|
|
|
|
config_kwargs["quantization_config"] = BitsAndBytesConfig(
|
|
|
|
load_in_4bit=True,
|
|
|
|
bnb_4bit_compute_dtype=model_args.compute_dtype,
|
|
|
|
bnb_4bit_use_double_quant=model_args.double_quantization,
|
|
|
|
bnb_4bit_quant_type=model_args.quantization_type
|
|
|
|
)
|
|
|
|
is_mergeable = False
|
|
|
|
config_kwargs["device_map"] = {"": int(os.environ.get("LOCAL_RANK", "0"))}
|
|
|
|
logger.info("Quantizing model to {} bit.".format(model_args.quantization_bit))
|
|
|
|
|
|
|
|
if not is_trainable: # `device_map=auto` should be used for inference only
|
|
|
|
config_kwargs["device_map"] = "auto"
|
|
|
|
|
|
|
|
# Load and prepare pretrained models (without valuehead).
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
model_args.model_name_or_path,
|
|
|
|
config=config,
|
|
|
|
torch_dtype=torch.bfloat16 if model_args.compute_dtype == torch.bfloat16 else torch.float16,
|
|
|
|
low_cpu_mem_usage=True,
|
|
|
|
**config_kwargs
|
|
|
|
)
|
|
|
|
model = prepare_model_for_training(model) if is_trainable else model
|
|
|
|
model = _init_adapter(model, model_args, finetuning_args, is_trainable, is_mergeable)
|
|
|
|
|
|
|
|
if stage == "rm" or stage == "ppo": # add value head
|
|
|
|
model = AutoModelForCausalLMWithValueHead.from_pretrained(model)
|
|
|
|
|
|
|
|
if stage == "rm" and model_args.checkpoint_dir is not None: # load valuehead weights to evaluate reward model
|
|
|
|
logger.warning("Only the last checkpoint containing valuehead will be loaded as the valuehead.")
|
|
|
|
if load_valuehead_params(model, model_args.checkpoint_dir[-1]):
|
|
|
|
model.v_head.load_state_dict({
|
|
|
|
"summary.weight": getattr(model, "reward_head_weight"),
|
|
|
|
"summary.bias": getattr(model, "reward_head_bias")
|
|
|
|
})
|
|
|
|
|
|
|
|
if stage == "ppo": # load reward model
|
|
|
|
assert is_trainable, "PPO stage cannot be performed at evaluation."
|
|
|
|
assert model_args.reward_model is not None, "Reward model is necessary for PPO training."
|
|
|
|
logger.info("Load reward model from {}".format(model_args.reward_model))
|
|
|
|
model.pretrained_model.load_adapter(model_args.reward_model, "reward", is_trainable=False)
|
|
|
|
assert load_valuehead_params(model, model_args.reward_model), "Reward model is not correctly loaded."
|
|
|
|
|
|
|
|
if not is_trainable:
|
|
|
|
model.requires_grad_(False) # fix all model params
|
|
|
|
model = model.half() if model_args.quantization_bit is None else model # cast from fp32 to fp16
|
|
|
|
|
|
|
|
print_trainable_params(model)
|
|
|
|
|
|
|
|
return model, tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
def prepare_args(
|
|
|
|
stage: Literal["pt", "sft", "rm", "ppo"]
|
|
|
|
) -> Tuple[ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments, FinetuningArguments]:
|
|
|
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments, FinetuningArguments))
|
|
|
|
|
|
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # Provide arguments with a json file.
|
|
|
|
model_args, data_args, training_args, finetuning_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
|
|
|
else:
|
|
|
|
model_args, data_args, training_args, finetuning_args = parser.parse_args_into_dataclasses()
|
|
|
|
|
|
|
|
# Setup logging
|
|
|
|
if training_args.should_log:
|
|
|
|
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
|
|
|
|
transformers.utils.logging.set_verbosity_info()
|
|
|
|
|
|
|
|
log_level = training_args.get_process_log_level()
|
|
|
|
datasets.utils.logging.set_verbosity(log_level)
|
|
|
|
transformers.utils.logging.set_verbosity(log_level)
|
|
|
|
transformers.utils.logging.enable_default_handler()
|
|
|
|
transformers.utils.logging.enable_explicit_format()
|
|
|
|
|
|
|
|
# Check arguments (do not check finetuning_args since it may be loaded from checkpoints)
|
|
|
|
if stage != "sft" and training_args.predict_with_generate:
|
|
|
|
raise ValueError("`predict_with_generate` cannot be set as True at PT, RM and PPO stages.")
|
|
|
|
|
|
|
|
if training_args.do_train and training_args.predict_with_generate:
|
|
|
|
raise ValueError("`predict_with_generate` cannot be set as True while training.")
|
|
|
|
|
|
|
|
if training_args.do_predict and (not training_args.predict_with_generate):
|
|
|
|
raise ValueError("Please enable `predict_with_generate` to save model predictions.")
|
|
|
|
|
|
|
|
if model_args.quantization_bit is not None and finetuning_args.finetuning_type != "lora":
|
|
|
|
raise ValueError("Quantization is only compatible with the LoRA method.")
|
|
|
|
|
|
|
|
if model_args.quantization_bit is not None and (not training_args.do_train):
|
|
|
|
logger.warning("Evaluating model in 4/8-bit mode may cause lower scores.")
|
|
|
|
|
|
|
|
if training_args.do_train and (not training_args.fp16):
|
|
|
|
logger.warning("We recommend enable fp16 mixed precision training.")
|
|
|
|
|
|
|
|
if data_args.prompt_template == "alpaca":
|
|
|
|
logger.warning("Please specify `prompt_template` if you are using other pre-trained models.")
|
|
|
|
|
|
|
|
if training_args.local_rank != -1 and training_args.ddp_find_unused_parameters is None:
|
|
|
|
logger.warning("`ddp_find_unused_parameters` needs to be set as False in DDP training.")
|
|
|
|
training_args.ddp_find_unused_parameters = False
|
|
|
|
|
|
|
|
training_args.optim = "adamw_torch" if training_args.optim == "adamw_hf" else training_args.optim # suppress warning
|
|
|
|
|
|
|
|
if model_args.quantization_bit is not None:
|
|
|
|
if training_args.fp16:
|
|
|
|
model_args.compute_dtype = torch.float16
|
|
|
|
elif training_args.bf16:
|
|
|
|
model_args.compute_dtype = torch.bfloat16
|
|
|
|
else:
|
|
|
|
model_args.compute_dtype = torch.float32
|
|
|
|
|
|
|
|
# Log on each process the small summary:
|
|
|
|
logger.info(
|
|
|
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}\n"
|
|
|
|
+ f" distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
|
|
|
)
|
|
|
|
logger.info(f"Training/evaluation parameters {training_args}")
|
|
|
|
|
|
|
|
# Set seed before initializing model.
|
|
|
|
transformers.set_seed(training_args.seed)
|
|
|
|
|
|
|
|
return model_args, data_args, training_args, finetuning_args
|
|
|
|
|
|
|
|
|
|
|
|
def prepare_infer_args() -> Tuple[ModelArguments, DataTrainingArguments, FinetuningArguments, GeneratingArguments]:
|
|
|
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, FinetuningArguments, GeneratingArguments))
|
|
|
|
|
|
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # Provide arguments with a json file.
|
|
|
|
model_args, data_args, finetuning_args, generating_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
|
|
|
else:
|
|
|
|
model_args, data_args, finetuning_args, generating_args = parser.parse_args_into_dataclasses()
|
|
|
|
|
|
|
|
if model_args.quantization_bit is not None and finetuning_args.finetuning_type != "lora":
|
|
|
|
raise ValueError("Quantization is only compatible with the LoRA method.")
|
|
|
|
|
|
|
|
if data_args.prompt_template == "alpaca":
|
|
|
|
logger.warning("Please specify `prompt_template` if you are using other pre-trained models.")
|
|
|
|
|
|
|
|
return model_args, data_args, finetuning_args, generating_args
|
|
|
|
|
|
|
|
|
|
|
|
def prepare_data(
|
|
|
|
model_args: ModelArguments,
|
|
|
|
data_args: DataTrainingArguments
|
|
|
|
) -> Dataset:
|
|
|
|
|
|
|
|
def checksum(file_path, hash):
|
|
|
|
with open(file_path, "rb") as datafile:
|
|
|
|
binary_data = datafile.read()
|
|
|
|
sha1 = hashlib.sha1(binary_data).hexdigest()
|
|
|
|
if sha1 != hash:
|
|
|
|
logger.warning("Checksum failed for {}. It may vary depending on the platform.".format(file_path))
|
|
|
|
|
|
|
|
max_samples = data_args.max_samples
|
|
|
|
all_datasets: List[Dataset] = [] # support multiple datasets
|
|
|
|
|
|
|
|
for dataset_attr in data_args.dataset_list:
|
|
|
|
|
|
|
|
logger.info("Loading dataset {}...".format(dataset_attr))
|
|
|
|
|
|
|
|
if dataset_attr.load_from == "hf_hub":
|
|
|
|
raw_datasets = load_dataset(dataset_attr.dataset_name, cache_dir=model_args.cache_dir)
|
|
|
|
elif dataset_attr.load_from == "script":
|
|
|
|
raw_datasets = load_dataset(
|
|
|
|
os.path.join(data_args.dataset_dir, dataset_attr.dataset_name),
|
|
|
|
cache_dir=model_args.cache_dir
|
|
|
|
)
|
|
|
|
elif dataset_attr.load_from == "file":
|
|
|
|
data_file = os.path.join(data_args.dataset_dir, dataset_attr.file_name)
|
|
|
|
|
|
|
|
extension = dataset_attr.file_name.split(".")[-1]
|
|
|
|
if extension == "csv":
|
|
|
|
file_type = "csv"
|
|
|
|
elif extension == "json" or extension == "jsonl":
|
|
|
|
file_type = "json"
|
|
|
|
else:
|
|
|
|
file_type = "text"
|
|
|
|
|
|
|
|
if dataset_attr.file_sha1 is not None:
|
|
|
|
checksum(data_file, dataset_attr.file_sha1)
|
|
|
|
else:
|
|
|
|
logger.warning("Checksum failed: missing SHA-1 hash value in dataset_info.json.")
|
|
|
|
|
|
|
|
raw_datasets = load_dataset(
|
|
|
|
file_type,
|
|
|
|
data_files=data_file,
|
|
|
|
cache_dir=model_args.cache_dir,
|
|
|
|
use_auth_token=True if model_args.use_auth_token else None
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
raise NotImplementedError
|
|
|
|
|
|
|
|
dataset = raw_datasets[data_args.split]
|
|
|
|
|
|
|
|
if max_samples is not None:
|
|
|
|
max_samples_temp = min(len(dataset), max_samples)
|
|
|
|
dataset = dataset.select(range(max_samples_temp))
|
|
|
|
|
|
|
|
dummy_data = [None] * len(dataset)
|
|
|
|
for column_name, target_name in [
|
|
|
|
("prompt_column", "prompt"),
|
|
|
|
("query_column", "query"),
|
|
|
|
("response_column", "response"),
|
|
|
|
("history_column", "history")
|
|
|
|
]: # every dataset will have 4 columns same as each other
|
|
|
|
if getattr(dataset_attr, column_name) != target_name:
|
|
|
|
if getattr(dataset_attr, column_name):
|
|
|
|
dataset = dataset.rename_column(getattr(dataset_attr, column_name), target_name)
|
|
|
|
else: # None or empty string
|
|
|
|
dataset = dataset.add_column(target_name, dummy_data)
|
|
|
|
all_datasets.append(dataset)
|
|
|
|
|
|
|
|
if len(data_args.dataset_list) == 1:
|
|
|
|
all_datasets = all_datasets[0]
|
|
|
|
else:
|
|
|
|
all_datasets = concatenate_datasets(all_datasets)
|
|
|
|
|
|
|
|
return all_datasets
|
|
|
|
|
|
|
|
|
|
|
|
def preprocess_data(
|
|
|
|
dataset: Dataset,
|
|
|
|
tokenizer: PreTrainedTokenizer,
|
|
|
|
data_args: DataTrainingArguments,
|
|
|
|
training_args: Seq2SeqTrainingArguments,
|
|
|
|
stage: Literal["pt", "sft", "rm", "ppo"]
|
|
|
|
) -> Dataset:
|
|
|
|
|
|
|
|
column_names = list(dataset.column_names)
|
|
|
|
prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
|
|
|
|
prompt_template = Template(data_args.prompt_template)
|
|
|
|
|
|
|
|
# support question with a single answer or multiple answers
|
|
|
|
def get_dialog(examples):
|
|
|
|
for i in range(len(examples["prompt"])):
|
|
|
|
if examples["prompt"][i] and examples["response"][i]:
|
|
|
|
query, answer = examples["prompt"][i], examples["response"][i]
|
|
|
|
query = query + "\n" + examples["query"][i] if examples["query"][i] else query
|
|
|
|
dialog = prompt_template.get_dialog(query, answer, examples["history"][i], prefix)
|
|
|
|
yield dialog
|
|
|
|
|
|
|
|
def preprocess_pretrain_dataset(examples):
|
|
|
|
# build grouped texts with format `X1 X2 X3 ...` (without [BOS] and [EOS])
|
|
|
|
text_ids = tokenizer(examples["prompt"], add_special_tokens=False)["input_ids"]
|
|
|
|
concatenated_ids = list(chain(*text_ids))
|
|
|
|
total_length = len(concatenated_ids)
|
|
|
|
# we drop the small remainder, and if the total_length < block_size, we exclude this batch
|
|
|
|
total_length = (total_length // data_args.max_source_length) * data_args.max_source_length
|
|
|
|
# split by chunks of max_source_length
|
|
|
|
result = [concatenated_ids[i: i + data_args.max_source_length] for i in
|
|
|
|
range(0, total_length, data_args.max_source_length)]
|
|
|
|
return {
|
|
|
|
"input_ids": result,
|
|
|
|
"labels": result.copy()
|
|
|
|
}
|
|
|
|
|
|
|
|
def preprocess_supervised_dataset(examples):
|
|
|
|
# build inputs with format `X [BOS] Y [EOS]` and labels with format `[IGNORE] ... [IGNORE] Y [EOS]`
|
|
|
|
# for input with history, we build multiple input-label pairs just like:
|
|
|
|
# https://github.com/lm-sys/FastChat/blob/f17c092f64840fa6354ed52789dccb2daa793d0b/fastchat/train/train.py#L112
|
|
|
|
model_inputs = {"input_ids": [], "labels": []}
|
|
|
|
for dialog in get_dialog(examples):
|
|
|
|
input_ids, labels = [], []
|
|
|
|
|
|
|
|
for i in range(len(dialog) // 2):
|
|
|
|
source_ids = tokenizer.encode(text=dialog[2*i], add_special_tokens=False)
|
|
|
|
target_ids = tokenizer.encode(text=dialog[2*i+1], add_special_tokens=False)
|
|
|
|
input_ids += source_ids + [tokenizer.bos_token_id] + target_ids + [tokenizer.eos_token_id]
|
|
|
|
labels += [IGNORE_INDEX] * (len(source_ids) + 1) + target_ids + [tokenizer.eos_token_id]
|
|
|
|
|
|
|
|
model_inputs["input_ids"].append(input_ids[:data_args.max_source_length + data_args.max_target_length])
|
|
|
|
model_inputs["labels"].append(labels[:data_args.max_source_length + data_args.max_target_length])
|
|
|
|
return model_inputs
|
|
|
|
|
|
|
|
def preprocess_unsupervised_dataset(examples):
|
|
|
|
# build inputs with format `X [BOS]` and labels with format `Y [BOS]`
|
|
|
|
model_inputs = {"input_ids": [], "labels": []}
|
|
|
|
for dialog in get_dialog(examples):
|
|
|
|
prompt, answer = "".join(dialog[:-1]), dialog[-1]
|
|
|
|
|
|
|
|
source_ids = tokenizer.encode(text=prompt, add_special_tokens=False)
|
|
|
|
target_ids = tokenizer.encode(text=answer, add_special_tokens=False)
|
|
|
|
|
|
|
|
if len(source_ids) > data_args.max_source_length - 1: # bos token
|
|
|
|
source_ids = source_ids[:data_args.max_source_length - 1]
|
|
|
|
if len(target_ids) > data_args.max_target_length - 1: # bos token
|
|
|
|
target_ids = target_ids[:data_args.max_target_length - 1]
|
|
|
|
|
|
|
|
input_ids = source_ids + [tokenizer.bos_token_id]
|
|
|
|
labels = target_ids + [tokenizer.bos_token_id]
|
|
|
|
|
|
|
|
model_inputs["input_ids"].append(input_ids)
|
|
|
|
model_inputs["labels"].append(labels)
|
|
|
|
return model_inputs
|
|
|
|
|
|
|
|
def preprocess_pairwise_dataset(examples):
|
|
|
|
# build input pairs with format `X [BOS] Y1 [EOS]` and `X [BOS] Y2 [EOS]`
|
|
|
|
model_inputs = {"accept_ids": [], "reject_ids": []}
|
|
|
|
for dialog in get_dialog(examples):
|
|
|
|
prompt, answer = "".join(dialog[:-1]), dialog[-1]
|
|
|
|
|
|
|
|
source_ids = tokenizer.encode(text=prompt, add_special_tokens=False)
|
|
|
|
accept_ids = tokenizer.encode(text=answer[0], add_special_tokens=False)
|
|
|
|
reject_ids = tokenizer.encode(text=answer[1], add_special_tokens=False)
|
|
|
|
|
|
|
|
if len(source_ids) > data_args.max_source_length - 1: # bos token
|
|
|
|
source_ids = source_ids[:data_args.max_source_length - 1]
|
|
|
|
if len(accept_ids) > data_args.max_target_length - 1: # eos token
|
|
|
|
accept_ids = accept_ids[:data_args.max_target_length - 1]
|
|
|
|
if len(reject_ids) > data_args.max_target_length - 1: # eos token
|
|
|
|
reject_ids = reject_ids[:data_args.max_target_length - 1]
|
|
|
|
|
|
|
|
accept_ids = source_ids + [tokenizer.bos_token_id] + accept_ids + [tokenizer.eos_token_id]
|
|
|
|
reject_ids = source_ids + [tokenizer.bos_token_id] + reject_ids + [tokenizer.eos_token_id]
|
|
|
|
|
|
|
|
model_inputs["accept_ids"].append(accept_ids)
|
|
|
|
model_inputs["reject_ids"].append(reject_ids)
|
|
|
|
return model_inputs
|
|
|
|
|
|
|
|
def print_supervised_dataset_example(example):
|
|
|
|
print("input_ids:\n{}".format(example["input_ids"]))
|
|
|
|
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"])))
|
|
|
|
print("label_ids:\n{}".format(example["labels"]))
|
|
|
|
print("labels:\n{}".format(
|
|
|
|
tokenizer.decode([d if d != IGNORE_INDEX else tokenizer.pad_token_id for d in example["labels"]]))
|
|
|
|
)
|
|
|
|
|
|
|
|
def print_pairwise_dataset_example(example):
|
|
|
|
print("accept_ids:\n{}".format(example["accept_ids"]))
|
|
|
|
print("accepts:\n{}".format(tokenizer.decode(example["accept_ids"])))
|
|
|
|
print("reject_ids:\n{}".format(example["reject_ids"]))
|
|
|
|
print("rejects:\n{}".format(tokenizer.decode(example["reject_ids"])))
|
|
|
|
|
|
|
|
def print_unsupervised_dataset_example(example):
|
|
|
|
print("input_ids:\n{}".format(example["input_ids"]))
|
|
|
|
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"])))
|
|
|
|
|
|
|
|
if stage == "pt":
|
|
|
|
preprocess_function = preprocess_pretrain_dataset
|
|
|
|
elif stage == "sft":
|
|
|
|
preprocess_function = preprocess_unsupervised_dataset \
|
|
|
|
if training_args.predict_with_generate else preprocess_supervised_dataset
|
|
|
|
elif stage == "rm":
|
|
|
|
preprocess_function = preprocess_pairwise_dataset
|
|
|
|
elif stage == "ppo":
|
|
|
|
preprocess_function = preprocess_unsupervised_dataset
|
|
|
|
|
|
|
|
with training_args.main_process_first(desc="dataset map pre-processing"):
|
|
|
|
dataset = dataset.map(
|
|
|
|
preprocess_function,
|
|
|
|
batched=True,
|
|
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
|
|
remove_columns=column_names,
|
|
|
|
load_from_cache_file=not data_args.overwrite_cache,
|
|
|
|
desc="Running tokenizer on dataset"
|
|
|
|
)
|
|
|
|
|
|
|
|
if stage == "pt":
|
|
|
|
print_unsupervised_dataset_example(dataset[0])
|
|
|
|
elif stage == "sft":
|
|
|
|
print_supervised_dataset_example(dataset[0])
|
|
|
|
elif stage == "rm":
|
|
|
|
print_pairwise_dataset_example(dataset[0])
|
|
|
|
elif stage == "ppo":
|
|
|
|
print_unsupervised_dataset_example(dataset[0])
|
|
|
|
|
|
|
|
return dataset
|