训练文本生成
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

119 lines
3.4 KiB

# coding=utf-8
# Implements API for fine-tuned models.
# Usage: python api_demo.py --model_name_or_path path_to_model --checkpoint_dir path_to_checkpoint
# Request:
# curl http://127.0.0.1:8000 --header 'Content-Type: application/json' --data '{"prompt": "Hello there!", "history": []}'
# Response:
# {
# "response": "'Hi there!'",
# "history": "[('Hello there!', 'Hi there!')]",
# "status": 200,
# "time": "2000-00-00 00:00:00"
# }
import json
import torch
import uvicorn
import datetime
from fastapi import FastAPI, Request
from utils import (
load_pretrained,
prepare_infer_args,
get_logits_processor
)
def torch_gc():
if not torch.cuda.is_available():
num_gpus = torch.cuda.device_count()
for device_id in range(num_gpus):
with torch.cuda.device(device_id):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
app = FastAPI()
@app.post("/")
async def create_item(request: Request):
global model, tokenizer, format_example
# Parse the request JSON
json_post_raw = await request.json()
json_post = json.dumps(json_post_raw)
json_post_list = json.loads(json_post)
prompt = json_post_list.get("prompt")
history = json_post_list.get("history")
# Tokenize the input prompt
input_ids = tokenizer([format_example(prompt, history)], return_tensors="pt")["input_ids"]
input_ids = input_ids.to(model.device)
# Generation arguments
gen_kwargs = {
"input_ids": input_ids,
"do_sample": True,
"top_p": 0.7,
"temperature": 0.95,
"num_beams": 1,
"max_new_tokens": 512,
"repetition_penalty": 1.0,
"logits_processor": get_logits_processor()
}
# Generate response
with torch.no_grad():
generation_output = model.generate(**gen_kwargs)
outputs = generation_output.tolist()[0][len(input_ids[0]):]
response = tokenizer.decode(outputs, skip_special_tokens=True)
# Update history
history = history + [(prompt, response)]
# Prepare response
now = datetime.datetime.now()
time = now.strftime("%Y-%m-%d %H:%M:%S")
answer = {
"response": repr(response),
"history": repr(history),
"status": 200,
"time": time
}
# Log and clean up
log = "[" + time + "] " + "\", prompt:\"" + prompt + "\", response:\"" + repr(response) + "\""
print(log)
torch_gc()
return answer
if __name__ == "__main__":
model_args, data_args, finetuning_args = prepare_infer_args()
model, tokenizer = load_pretrained(model_args, finetuning_args)
def format_example_alpaca(query, history):
prompt = "Below is an instruction that describes a task. "
prompt += "Write a response that appropriately completes the request.\n"
prompt += "Instruction:\n"
for old_query, response in history:
prompt += "Human: {}\nAssistant: {}\n".format(old_query, response)
prompt += "Human: {}\nAssistant:".format(query)
return prompt
def format_example_ziya(query, history):
prompt = ""
for old_query, response in history:
prompt += "<human>: {}\n<bot>: {}\n".format(old_query, response)
prompt += "<human>: {}\n<bot>:".format(query)
return prompt
format_example = format_example_alpaca if data_args.prompt_template == "alpaca" else format_example_ziya
uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)