|
|
|
# coding=utf-8
|
|
|
|
# Implements stream chat in command line for fine-tuned models.
|
|
|
|
# Usage: python cli_demo.py --checkpoint_dir path_to_checkpoint
|
|
|
|
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from utils import (
|
|
|
|
load_pretrained,
|
|
|
|
prepare_infer_args,
|
|
|
|
get_logits_processor
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
|
|
|
|
model_args, data_args, finetuning_args = prepare_infer_args()
|
|
|
|
model_name = "BLOOM" if "bloom" in model_args.model_name_or_path else "LLaMA"
|
|
|
|
model, tokenizer = load_pretrained(model_args, finetuning_args)
|
|
|
|
|
|
|
|
if torch.cuda.device_count() > 1:
|
|
|
|
from accelerate import dispatch_model, infer_auto_device_map
|
|
|
|
device_map = infer_auto_device_map(model)
|
|
|
|
model = dispatch_model(model, device_map)
|
|
|
|
else:
|
|
|
|
model = model.cuda()
|
|
|
|
|
|
|
|
model.eval()
|
|
|
|
|
|
|
|
def format_example_alpaca(query, history):
|
|
|
|
prompt = "Below is an instruction that describes a task. "
|
|
|
|
prompt += "Write a response that appropriately completes the request.\n"
|
|
|
|
prompt += "Instruction:\n"
|
|
|
|
for old_query, response in history:
|
|
|
|
prompt += "Human: {}\nAssistant: {}\n".format(old_query, response)
|
|
|
|
prompt += "Human: {}\nAssistant:".format(query)
|
|
|
|
return prompt
|
|
|
|
|
|
|
|
def format_example_ziya(query, history):
|
|
|
|
prompt = ""
|
|
|
|
for old_query, response in history:
|
|
|
|
prompt += "<human>: {}\n<bot>: {}\n".format(old_query, response)
|
|
|
|
prompt += "<human>: {}\n<bot>:".format(query)
|
|
|
|
return prompt
|
|
|
|
|
|
|
|
format_example = format_example_alpaca if data_args.prompt_template == "alpaca" else format_example_ziya
|
|
|
|
|
|
|
|
def predict(query, history: list):
|
|
|
|
input_ids = tokenizer([format_example(query, history)], return_tensors="pt")["input_ids"]
|
|
|
|
input_ids = input_ids.to(model.device)
|
|
|
|
gen_kwargs = {
|
|
|
|
"do_sample": True,
|
|
|
|
"top_p": 0.7,
|
|
|
|
"temperature": 0.95,
|
|
|
|
"num_beams": 1,
|
|
|
|
"max_new_tokens": 256,
|
|
|
|
"repetition_penalty": 1.5,
|
|
|
|
"logits_processor": get_logits_processor()
|
|
|
|
}
|
|
|
|
with torch.no_grad():
|
|
|
|
generation_output = model.generate(input_ids=input_ids, **gen_kwargs)
|
|
|
|
outputs = generation_output.tolist()[0][len(input_ids[0]):]
|
|
|
|
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
|
|
|
history = history + [(query, response)]
|
|
|
|
return response, history
|
|
|
|
|
|
|
|
history = []
|
|
|
|
print("欢迎使用 {} 模型,输入内容即可对话,clear清空对话历史,stop终止程序".format(model_name))
|
|
|
|
while True:
|
|
|
|
try:
|
|
|
|
query = input("\nInput: ")
|
|
|
|
except UnicodeDecodeError:
|
|
|
|
print("Detected decoding error at the inputs, please set the terminal encoding to utf-8.")
|
|
|
|
continue
|
|
|
|
except Exception:
|
|
|
|
raise
|
|
|
|
|
|
|
|
if query.strip() == "stop":
|
|
|
|
break
|
|
|
|
|
|
|
|
if query.strip() == "clear":
|
|
|
|
history = []
|
|
|
|
print("History has been removed.")
|
|
|
|
continue
|
|
|
|
|
|
|
|
response, history = predict(query, history)
|
|
|
|
print("{}:".format(model_name), response)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|