You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
410 lines
15 KiB
410 lines
15 KiB
# -*- coding: utf-8 -*-
|
|
|
|
"""
|
|
@Time : 2023/3/29 14:27
|
|
@Author :
|
|
@FileName:
|
|
@Software:
|
|
@Describe:
|
|
"""
|
|
|
|
import os
|
|
from flask import Flask, jsonify, Response
|
|
from flask import request
|
|
import redis
|
|
import uuid
|
|
import json
|
|
import time
|
|
import threading
|
|
from threading import Thread
|
|
from flask import send_file, send_from_directory
|
|
import os
|
|
from flask import make_response
|
|
import openai
|
|
import base64
|
|
import re
|
|
import urllib.parse as pa
|
|
|
|
|
|
pool = redis.ConnectionPool(host='localhost', port=63179, max_connections=50, db=1, password='Zhicheng123*')
|
|
redis_ = redis.Redis(connection_pool=pool, decode_responses=True)
|
|
|
|
db_key_query = 'query'
|
|
db_key_querying = 'querying'
|
|
batch_size = 32
|
|
|
|
app = Flask(__name__)
|
|
app.config["JSON_AS_ASCII"] = False
|
|
|
|
import logging
|
|
lock = threading.RLock()
|
|
|
|
mulu_prompt = "请帮我根据题目为“{}”生成一个论文目录"
|
|
first_title_prompt = "论文题目是“{}”,目录是“{}”,请把其中的大标题“{}”的内容续写完整,保证续写内容不少于800字"
|
|
small_title_prompt = "论文题目是“{}”,目录是“{}”,请把其中的小标题“{}”的内容续写完整,保证续写内容不少于800字"
|
|
references_prompt = "论文题目是“{}”,目录是“{}”,请为这篇论文生成15篇中文的{},要求其中有有中文参考文献不低于12篇,英文参考文献不低于2篇"
|
|
thank_prompt = "论文题目是“{}”,目录是“{}”,请把其中的{}部分续写完整"
|
|
kaitibaogao_prompt = "请以《{}》为题目生成研究的主要的内容、背景、目的、意义,要求不少于1500字"
|
|
chinese_abstract_prompt = "请以《{}》为题目生成论文摘要,要求不少于500字"
|
|
english_abstract_prompt = "请把“{}”这段文字翻译成英文"
|
|
chinese_keyword_prompt = "请为“{}”这段论文摘要生成3-5个关键字"
|
|
english_keyword_prompt = "请把“{}”这几个关键字翻译成英文"
|
|
thanks = "致谢"
|
|
dabiaoti = ["二","三","四","五","六","七","八","九"]
|
|
|
|
# 正则
|
|
pantten_second_biaoti = '[2二ⅡⅠ][、.]\s{0,}?[\u4e00-\u9fa5]+'
|
|
pantten_other_biaoti = '[2-9二三四五六七八九ⅡⅢⅣⅤⅥⅦⅧⅨ][、.]\s{0,}?[\u4e00-\u9fa5]+'
|
|
|
|
project_data_txt_path = "/home/majiahui/ChatGPT_Sever/new_data_txt"
|
|
|
|
api_key_list = ["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",
|
|
"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",
|
|
"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",
|
|
"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",
|
|
"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",
|
|
"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",
|
|
"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",
|
|
"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",
|
|
"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"]
|
|
|
|
# "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"
|
|
|
|
def chat_title(title, api_key):
|
|
global lock
|
|
# time.sleep(5)
|
|
# return [str(i) for i in range(20)]
|
|
openai.api_key = api_key
|
|
res = openai.ChatCompletion.create(
|
|
model="gpt-3.5-turbo",
|
|
messages=[
|
|
{"role": "user", "content": mulu_prompt.format(title)},
|
|
],
|
|
temperature=0.5
|
|
)
|
|
lock.acquire()
|
|
api_key_list.append(api_key)
|
|
lock.release()
|
|
mulu = res.choices[0].message.content
|
|
mulu_list = str(mulu).split("\n")
|
|
mulu_list = [i.strip() for i in mulu_list if i != ""]
|
|
return mulu, mulu_list
|
|
|
|
|
|
def chat_kaitibaogao(title, api_key, uuid_path):
|
|
global lock
|
|
# time.sleep(1)
|
|
openai.api_key = api_key
|
|
res = openai.ChatCompletion.create(
|
|
model="gpt-3.5-turbo",
|
|
messages=[
|
|
{"role": "user", "content": kaitibaogao_prompt.format(title)},
|
|
],
|
|
temperature=0.5
|
|
)
|
|
kaitibaogao = res.choices[0].message.content
|
|
kaitibaogao_path = os.path.join(uuid_path, "kaitibaogao.txt")
|
|
with open(kaitibaogao_path, 'w', encoding='utf8') as f_kaitibaogao:
|
|
f_kaitibaogao.write(kaitibaogao)
|
|
lock.acquire()
|
|
api_key_list.append(api_key)
|
|
lock.release()
|
|
|
|
|
|
class GeneratePaper:
|
|
def __init__(self, mulu, table):
|
|
self.mulu = mulu
|
|
self.paper = [""] * len(table)
|
|
|
|
def chat_content_(self,api_key, mulu_title_id, title, mulu, subtitle, prompt):
|
|
global lock
|
|
# time.sleep(5)
|
|
# api_key_list.append(api_key)
|
|
# self.paper[mulu_title_id] = subtitle
|
|
if subtitle[:2] == "@@":
|
|
self.paper[mulu_title_id] = subtitle[2:]
|
|
else:
|
|
openai.api_key = api_key
|
|
res = openai.ChatCompletion.create(
|
|
model="gpt-3.5-turbo",
|
|
messages=[
|
|
{"role": "user", "content": prompt.format(title, mulu, subtitle)},
|
|
],
|
|
temperature=0.5
|
|
)
|
|
self.paper[mulu_title_id] = res.choices[0].message.content
|
|
lock.acquire()
|
|
api_key_list.append(api_key)
|
|
lock.release()
|
|
# return res.choices[0].message.content
|
|
|
|
|
|
def classify(): # 调用模型,设置最大batch_size
|
|
while True:
|
|
if redis_.llen(db_key_query) == 0: # 若队列中没有元素就继续获取
|
|
time.sleep(3)
|
|
continue
|
|
thread_list = []
|
|
query = redis_.lpop(db_key_query).decode('UTF-8') # 获取query的text
|
|
data_dict_path = json.loads(query)
|
|
query_id = data_dict_path['id']
|
|
title = data_dict_path['title']
|
|
# project_data_txt_path = os.path.abspath("new_data_txt")
|
|
# uuid_path = "new_data_txt/{}/".format(query_id)
|
|
|
|
# uuid路径
|
|
uuid_path = os.path.join(project_data_txt_path, query_id)
|
|
print("uuid",query_id)
|
|
os.makedirs(uuid_path)
|
|
print("uuid_path", os.path.exists(uuid_path))
|
|
|
|
# 生成开题报告
|
|
# title, api_key, uuid_path
|
|
|
|
lock.acquire()
|
|
api_key = api_key_list.pop()
|
|
lock.release()
|
|
t = Thread(target=chat_kaitibaogao, args=(title,
|
|
api_key,
|
|
uuid_path,
|
|
))
|
|
t.start()
|
|
thread_list.append(t)
|
|
|
|
# 生成目录
|
|
while True:
|
|
if api_key_list != []:
|
|
api_key = api_key_list.pop()
|
|
break
|
|
else:
|
|
time.sleep(3)
|
|
|
|
|
|
mulu, mulu_list = chat_title(title, api_key)
|
|
|
|
|
|
# mulu_base64 = base64.b64encode(mulu.encode('utf-8'))
|
|
# mulu_path = os.path.join(uuid_path, "mulu.txt")
|
|
# with open(mulu_path, 'wb', encoding='utf8') as f2:
|
|
# f2.write(mulu_base64)
|
|
|
|
|
|
index = 0
|
|
print(mulu_list)
|
|
|
|
cun_bool = False
|
|
table_of_contents = [mulu_list[0]]
|
|
|
|
for i in mulu_list[1:]:
|
|
result_second_biaoti_list = re.findall(pantten_second_biaoti, i)
|
|
result_other_biaoti_list = re.findall(pantten_other_biaoti, i)
|
|
if result_second_biaoti_list != []:
|
|
table_of_contents.append("@@" + i)
|
|
cun_bool = True
|
|
continue
|
|
if cun_bool == False:
|
|
continue
|
|
else:
|
|
if result_other_biaoti_list != []:
|
|
table_of_contents.append("@@" + i)
|
|
else:
|
|
table_of_contents.append(i)
|
|
|
|
print(table_of_contents)
|
|
# table_of_contents = table_of_contents[:3] + table_of_contents[-1:]
|
|
# print(table_of_contents)
|
|
|
|
|
|
thanks_bool_table = table_of_contents[-3:]
|
|
if thanks not in thanks_bool_table:
|
|
table_of_contents.insert(-1, "致谢")
|
|
|
|
chat_class = GeneratePaper(mulu_list, table_of_contents)
|
|
print(len(table_of_contents))
|
|
|
|
|
|
############################################################
|
|
while True:
|
|
if api_key_list == []:
|
|
time.sleep(1)
|
|
continue
|
|
if index == len(table_of_contents):
|
|
break
|
|
lock.acquire()
|
|
api_key = api_key_list.pop()
|
|
lock.release()
|
|
subtitle = table_of_contents[index]
|
|
if index == 0:
|
|
prompt = first_title_prompt
|
|
elif subtitle == "参考文献":
|
|
prompt = references_prompt
|
|
elif subtitle == "致谢":
|
|
prompt = thank_prompt
|
|
else:
|
|
prompt = small_title_prompt
|
|
print("请求的所有参数", api_key,
|
|
index,
|
|
title,
|
|
subtitle,
|
|
prompt)
|
|
|
|
t = Thread(target=chat_class.chat_content_, args=(api_key,
|
|
index,
|
|
title,
|
|
mulu,
|
|
subtitle,
|
|
prompt))
|
|
t.start()
|
|
thread_list.append(t)
|
|
lock.acquire()
|
|
index += 1
|
|
lock.release()
|
|
|
|
for thread in thread_list:
|
|
thread.join()
|
|
|
|
|
|
print(chat_class.paper)
|
|
paper = "\n".join(chat_class.paper)
|
|
print(paper)
|
|
|
|
content_path = os.path.join(uuid_path, "content.txt")
|
|
with open(content_path, 'w', encoding='utf8') as f_content:
|
|
f_content.write(paper)
|
|
|
|
mulu_path = os.path.join(uuid_path, "mulu.txt")
|
|
with open(mulu_path, 'w', encoding='utf8') as f_mulu:
|
|
f_mulu.write(mulu)
|
|
|
|
kaitibaogao_txt_path = os.path.join(uuid_path, "kaitibaogao.txt")
|
|
|
|
# word保存路径
|
|
|
|
save_word_paper = os.path.join(uuid_path, "paper.docx")
|
|
save_word_paper_start = os.path.join(uuid_path, "paper_start.docx".format(title))
|
|
|
|
# content_base64 = base64.b64encode(paper.encode('utf-8'))
|
|
# content_path = os.path.join(uuid_path, "content.txt")
|
|
# with open(content_path, 'wb', encoding='utf8') as f2:
|
|
# f2.write(content_base64)
|
|
|
|
# 拼接成word
|
|
title = pa.quote(title)
|
|
mulu_path = mulu_path
|
|
content_path = content_path
|
|
|
|
# 调用jar包
|
|
print("java_path", mulu_path, content_path, title, save_word_paper)
|
|
os.system(
|
|
"java -Dfile.encoding=UTF-8 -jar '/home/majiahui/ChatGPT_Sever/createAiXieZuoWord.jar' '{}' '{}' '{}' '{}'".format(
|
|
mulu_path, content_path, title, save_word_paper))
|
|
|
|
print("jaba_kaitibaogao", kaitibaogao_txt_path, save_word_paper_start)
|
|
os.system("java -Dfile.encoding=UTF-8 -jar '/home/majiahui/ChatGPT_Sever/createAiXieZuoKaitiWord.jar' '{}' '{}'".format(
|
|
kaitibaogao_txt_path, save_word_paper_start))
|
|
|
|
url_path_paper = "http://104.244.89.190:14000/download?filename_path={}/paper.docx".format(query_id)
|
|
url_path_kaiti = "http://104.244.89.190:14000/download?filename_path={}/paper_start.docx".format(query_id)
|
|
# content_path = os.path.join(uuid_path, "content.txt")
|
|
# load_result_path = res_path.format(query_id)
|
|
# load_result_path = os.path.abspath(load_result_path)
|
|
# with open(load_result_path, 'w', encoding='utf8') as f2:
|
|
# f2.write(paper)
|
|
|
|
return_text = str({"id":query_id,
|
|
"content_url_path": url_path_paper,
|
|
"content_report_url_path": url_path_kaiti,
|
|
"probabilities": None,
|
|
"status_code": 200})
|
|
redis_.srem(db_key_querying, query_id)
|
|
redis_.set(query_id, return_text, 28800)
|
|
|
|
|
|
@app.route("/chat", methods=["POST"])
|
|
def chat():
|
|
print(request.remote_addr)
|
|
title = request.json["title"]
|
|
id_ = str(uuid.uuid1())
|
|
|
|
redis_.rpush(db_key_query, json.dumps({"id":id_, "title": title})) # 加入redis
|
|
return_text = {"texts": {'id': id_,}, "probabilities": None, "status_code": 200}
|
|
print("ok")
|
|
redis_.sadd(db_key_querying, id_)
|
|
|
|
return jsonify(return_text) # 返回结果
|
|
|
|
|
|
@app.route("/download", methods=['GET'])
|
|
def download_file():
|
|
# 需要知道2个参数, 第1个参数是本地目录的path, 第2个参数是文件名(带扩展名)
|
|
# directory = os.path.join(project_data_txt_path, filename) # 假设在当前目录
|
|
|
|
# uuid_path, word_name = str(filename).split("/")
|
|
# word_path_root = os.path.join(project_data_txt_path, uuid_path)
|
|
# response = make_response(send_from_directory(word_path_root, word_name, as_attachment=True))
|
|
# response.headers["Content-Disposition"] = "attachment; filename={}".format(filename.encode().decode('latin-1'))
|
|
filename_path = request.args.get('filename_path', '')
|
|
filename = filename_path.split("/")[1]
|
|
path_name = os.path.join(project_data_txt_path, filename_path)
|
|
with open(path_name, 'rb') as f:
|
|
stream = f.read()
|
|
response = Response(stream, content_type='application/octet-stream')
|
|
response.headers['Content-disposition'] = 'attachment; filename={}'.format(filename)
|
|
|
|
return response
|
|
|
|
|
|
@app.route("/search", methods=["POST"])
|
|
def search():
|
|
id_ = request.json['id'] # 获取用户query中的文本 例如"I love you"
|
|
result = redis_.get(id_) # 获取该query的模型结果
|
|
if result is not None:
|
|
# redis_.delete(id_)
|
|
# result_dict = result.decode('UTF-8')
|
|
|
|
result_dict = eval(result)
|
|
# return_text = {"id":query_id, "load_result_path": load_result_path, "probabilities": None, "status_code": 200}
|
|
query_id = result_dict["id"]
|
|
# "content_url_path": url_path_paper,
|
|
# "content_report_url_path": url_path_kaiti,
|
|
content_url_path = result_dict["content_url_path"]
|
|
content_report_url_path = result_dict["content_report_url_path"]
|
|
probabilities = result_dict["probabilities"]
|
|
result_text = {'code': 200,
|
|
'content_url_path': content_url_path,
|
|
'content_report_url_path': content_report_url_path,
|
|
'probabilities': probabilities}
|
|
else:
|
|
querying_list = list(redis_.smembers("querying"))
|
|
querying_set = set()
|
|
for i in querying_list:
|
|
querying_set.add(i.decode())
|
|
|
|
querying_bool = False
|
|
if id_ in querying_set:
|
|
querying_bool = True
|
|
|
|
query_list_json = redis_.lrange(db_key_query, 0, -1)
|
|
query_set_ids = set()
|
|
for i in query_list_json:
|
|
data_dict = json.loads(i)
|
|
query_id = data_dict['id']
|
|
query_set_ids.add(query_id)
|
|
|
|
query_bool = False
|
|
if id_ in query_set_ids:
|
|
query_bool = True
|
|
|
|
if querying_bool == True and query_bool == True:
|
|
result_text = {'code': "201", 'text': "", 'probabilities': None}
|
|
elif querying_bool == True and query_bool == False:
|
|
result_text = {'code': "202", 'text': "", 'probabilities': None}
|
|
else:
|
|
result_text = {'code': "203", 'text': "", 'probabilities': None}
|
|
return jsonify(result_text) # 返回结果
|
|
|
|
t1 = Thread(target=classify)
|
|
t1.start()
|
|
|
|
if __name__ == "__main__":
|
|
app.run(host="0.0.0.0", port=14000, threaded=True, debug=False)
|