Compare commits
1 Commits
Author | SHA1 | Date |
---|---|---|
![]() |
cff81d4608 | 2 years ago |
1 changed files with 531 additions and 0 deletions
@ -0,0 +1,531 @@ |
|||||
|
from flask import Flask, jsonify, Response |
||||
|
from flask import request |
||||
|
import redis |
||||
|
import uuid |
||||
|
import json |
||||
|
import time |
||||
|
import threading |
||||
|
from threading import Thread |
||||
|
from flask import send_file, send_from_directory |
||||
|
import os |
||||
|
from flask import make_response |
||||
|
import openai |
||||
|
import base64 |
||||
|
import re |
||||
|
import urllib.parse as pa |
||||
|
import socket |
||||
|
|
||||
|
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) |
||||
|
s.connect(("8.8.8.8", 80)) |
||||
|
localhostip = s.getsockname()[0] |
||||
|
|
||||
|
lock = threading.RLock() |
||||
|
pool = redis.ConnectionPool(host='localhost', port=6379, max_connections=50, db=2) |
||||
|
redis_ = redis.Redis(connection_pool=pool, decode_responses=True) |
||||
|
|
||||
|
pantten_second_biaoti = '[2二ⅡⅠ][、.]\s{0,}?[\u4e00-\u9fa5]+' |
||||
|
pantten_other_biaoti = '[2-9二三四五六七八九ⅡⅢⅣⅤⅥⅦⅧⅨ][、.]\s{0,}?[\u4e00-\u9fa5]+' |
||||
|
|
||||
|
mulu_prompt = "请帮我根据题目为“{}”生成一个论文目录" |
||||
|
first_title_prompt = "论文题目是“{}”,目录是“{}”,请把其中的大标题“{}”的内容续写完整,保证续写内容不少于800字" |
||||
|
small_title_prompt = "论文题目是“{}”,目录是“{}”,请把其中的小标题“{}”的内容续写完整,保证续写内容不少于800字" |
||||
|
references_prompt = "论文题目是“{}”,目录是“{}”,请为这篇论文生成15篇中文的{},要求其中有有中文参考文献不低于12篇,英文参考文献不低于2篇" |
||||
|
thank_prompt = "论文题目是“{}”,目录是“{}”,请把其中的{}部分续写完整" |
||||
|
kaitibaogao_prompt = "请以《{}》为题目生成研究的主要的内容、背景、目的、意义,要求不少于100字" |
||||
|
chinese_abstract_prompt = "请以《{}》为题目生成论文摘要,要求不少于1500字" |
||||
|
english_abstract_prompt = "请把“{}”这段文字翻译成英文" |
||||
|
chinese_keyword_prompt = "请为“{}”这段论文摘要生成3-5个关键字" |
||||
|
english_keyword_prompt = "请把“{}”这几个关键字翻译成英文" |
||||
|
thanks = "致谢" |
||||
|
references = "参考文献" |
||||
|
dabiaoti = ["二", "三", "四", "五", "六", "七", "八", "九"] |
||||
|
project_data_txt_path = "/home/majiahui/ChatGPT_Sever/new_data_txt" |
||||
|
|
||||
|
""" |
||||
|
|
||||
|
key_list = [ |
||||
|
{"ip": key-api}, |
||||
|
{"ip": key-api}, |
||||
|
{"ip": key-api}, |
||||
|
] |
||||
|
|
||||
|
redis_title = [] |
||||
|
|
||||
|
redis_title_ing = [] |
||||
|
|
||||
|
redis_small_task = [ |
||||
|
{ |
||||
|
uuid, |
||||
|
api_key, |
||||
|
mulu_title_id, |
||||
|
title, |
||||
|
mulu, |
||||
|
subtitle, |
||||
|
prompt |
||||
|
} |
||||
|
] |
||||
|
|
||||
|
redis_res = [ |
||||
|
{ |
||||
|
"uuid": |
||||
|
"完成进度": |
||||
|
"标题": |
||||
|
"中文摘要":"", |
||||
|
"英文摘要" |
||||
|
"中文关键字" |
||||
|
"英文关键字" |
||||
|
"正文" : [""] * len(content) |
||||
|
} |
||||
|
] - |
||||
|
|
||||
|
> list() |
||||
|
|
||||
|
""" |
||||
|
|
||||
|
openaikey_list = ["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", |
||||
|
"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", |
||||
|
"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", |
||||
|
"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", |
||||
|
"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", |
||||
|
"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", |
||||
|
"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", |
||||
|
"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", |
||||
|
"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"] |
||||
|
|
||||
|
|
||||
|
redis_key_name_openaikey_list = "openaikey_list_{}".format(str(localhostip)) |
||||
|
|
||||
|
redis_title = "redis_title" |
||||
|
|
||||
|
redis_title_ing = "redis_title_ing" |
||||
|
|
||||
|
redis_small_task = "redis_small_task" |
||||
|
|
||||
|
redis_res = "redis_res" |
||||
|
|
||||
|
for i in openaikey_list: |
||||
|
redis_.rpush(redis_key_name_openaikey_list, i) |
||||
|
|
||||
|
|
||||
|
def chat_kaitibaogao(api_key, uuid, main_parameter): |
||||
|
# t = Thread(target=chat_kaitibaogao, args=(api_key, |
||||
|
# uuid, |
||||
|
# main_parameter |
||||
|
# time.sleep(1) |
||||
|
openai.api_key = api_key |
||||
|
res = openai.ChatCompletion.create( |
||||
|
model="gpt-3.5-turbo", |
||||
|
messages=[ |
||||
|
{"role": "user", "content": kaitibaogao_prompt.format(main_parameter[0])}, |
||||
|
], |
||||
|
temperature=0.5 |
||||
|
) |
||||
|
kaitibaogao = res.choices[0].message.content |
||||
|
# kaitibaogao_path = os.path.join(, "kaitibaogao.txt") |
||||
|
# with open(kaitibaogao_path, 'w', encoding='utf8') as f_kaitibaogao: |
||||
|
# f_kaitibaogao.write(kaitibaogao) |
||||
|
|
||||
|
redis_.rpush(redis_key_name_openaikey_list, api_key) |
||||
|
lock.acquire() |
||||
|
res_dict_str = redis_.hget(redis_res, uuid) |
||||
|
res_dict = json.loads(res_dict_str) |
||||
|
res_dict["tasking_num"] += 1 |
||||
|
res_dict["开题报告"] = kaitibaogao |
||||
|
res_dict_str = json.dumps(res_dict, ensure_ascii=False) |
||||
|
redis_.hset(redis_res, uuid, res_dict_str) |
||||
|
lock.release() |
||||
|
|
||||
|
|
||||
|
def chat_abstract_keyword(api_key, uuid, main_parameter): |
||||
|
# api_key, |
||||
|
# uuid, |
||||
|
# main_parameter |
||||
|
# time.sleep(7) |
||||
|
openai.api_key = api_key |
||||
|
# 生成中文摘要 |
||||
|
res = openai.ChatCompletion.create( |
||||
|
model="gpt-3.5-turbo", |
||||
|
messages=[ |
||||
|
{"role": "user", "content": chinese_abstract_prompt.format(main_parameter[0])}, |
||||
|
], |
||||
|
temperature=0.5 |
||||
|
) |
||||
|
chinese_abstract = res.choices[0].message.content |
||||
|
# 生成英文的摘要 |
||||
|
res = openai.ChatCompletion.create( |
||||
|
model="gpt-3.5-turbo", |
||||
|
messages=[ |
||||
|
{"role": "user", "content": english_abstract_prompt.format(chinese_abstract)}, |
||||
|
], |
||||
|
temperature=0.5 |
||||
|
) |
||||
|
english_abstract = res.choices[0].message.content |
||||
|
# 生成中文关键字 |
||||
|
res = openai.ChatCompletion.create( |
||||
|
model="gpt-3.5-turbo", |
||||
|
messages=[ |
||||
|
{"role": "user", "content": chinese_keyword_prompt.format(chinese_abstract)}, |
||||
|
], |
||||
|
temperature=0.5 |
||||
|
) |
||||
|
chinese_keyword = res.choices[0].message.content |
||||
|
# 生成英文关键字 |
||||
|
res = openai.ChatCompletion.create( |
||||
|
model="gpt-3.5-turbo", |
||||
|
messages=[ |
||||
|
{"role": "user", "content": english_keyword_prompt.format(chinese_keyword)}, |
||||
|
], |
||||
|
temperature=0.5 |
||||
|
) |
||||
|
|
||||
|
english_keyword = res.choices[0].message.content |
||||
|
|
||||
|
paper_abstract_keyword = { |
||||
|
"中文摘要": chinese_abstract, |
||||
|
"英文摘要": english_abstract, |
||||
|
"中文关键词": chinese_keyword, |
||||
|
"英文关键词": english_keyword |
||||
|
} |
||||
|
|
||||
|
# json_str = json.dumps(paper_abstract_keyword, indent=4, ensure_ascii=False) |
||||
|
# abstract_keyword_path = os.path.join(uuid_path, "abstract_keyword.json") |
||||
|
# with open(abstract_keyword_path, 'w') as json_file: |
||||
|
# json_file.write(json_str) |
||||
|
# |
||||
|
# lock.acquire() |
||||
|
# api_key_list.append(api_key) |
||||
|
# lock.release() |
||||
|
redis_.rpush(redis_key_name_openaikey_list, api_key) |
||||
|
lock.acquire() |
||||
|
res_dict_str = redis_.hget(redis_res, uuid) |
||||
|
res_dict = json.loads(res_dict_str) |
||||
|
res_dict["tasking_num"] += 1 |
||||
|
res_dict["中文摘要"] = paper_abstract_keyword["中文摘要"] |
||||
|
res_dict["英文摘要"] = paper_abstract_keyword["英文摘要"] |
||||
|
res_dict["中文关键词"] = paper_abstract_keyword["中文关键词"] |
||||
|
res_dict["英文关键词"] = paper_abstract_keyword["英文关键词"] |
||||
|
res_dict_str = json.dumps(res_dict, ensure_ascii=False) |
||||
|
redis_.hset(redis_res, uuid, res_dict_str) |
||||
|
lock.release() |
||||
|
|
||||
|
|
||||
|
def chat_content(api_key, uuid, main_parameter): |
||||
|
# api_key, |
||||
|
# uuid, |
||||
|
# main_parameter : |
||||
|
# content_index, |
||||
|
# title, |
||||
|
# mulu, |
||||
|
# subtitle, |
||||
|
# prompt |
||||
|
# time.sleep(5) |
||||
|
|
||||
|
content_index = main_parameter[0] |
||||
|
title = main_parameter[1] |
||||
|
mulu = main_parameter[2] |
||||
|
subtitle = main_parameter[3] |
||||
|
prompt = main_parameter[4] |
||||
|
|
||||
|
res_content = "" |
||||
|
if subtitle[:2] == "@@": |
||||
|
res_content = subtitle[2:] |
||||
|
else: |
||||
|
openai.api_key = api_key |
||||
|
res = openai.ChatCompletion.create( |
||||
|
model="gpt-3.5-turbo", |
||||
|
messages=[ |
||||
|
{"role": "user", "content": prompt.format(title, mulu, subtitle)}, |
||||
|
], |
||||
|
temperature=0.5 |
||||
|
) |
||||
|
res_content = res.choices[0].message.content |
||||
|
redis_.rpush(redis_key_name_openaikey_list, api_key) |
||||
|
lock.acquire() |
||||
|
res_dict_str = redis_.hget(redis_res, uuid) |
||||
|
res_dict = json.loads(res_dict_str) |
||||
|
res_dict["tasking_num"] += 1 |
||||
|
table_of_contents = res_dict["table_of_contents"] |
||||
|
table_of_contents[content_index] = res_content |
||||
|
res_dict["table_of_contents"] = table_of_contents |
||||
|
res_dict_str = json.dumps(res_dict, ensure_ascii=False) |
||||
|
redis_.hset(redis_res, uuid, res_dict_str) |
||||
|
lock.release() |
||||
|
|
||||
|
|
||||
|
def threading_mulu(key_api, title, uuid): |
||||
|
''' |
||||
|
生成目录并吧任务拆解进入子任务的redis_list中和储存结果的redis_list中 |
||||
|
:return: |
||||
|
''' |
||||
|
|
||||
|
# time.sleep(5) |
||||
|
# return [str(i) for i in range(20)] |
||||
|
|
||||
|
openai.api_key = key_api |
||||
|
res = openai.ChatCompletion.create( |
||||
|
model="gpt-3.5-turbo", |
||||
|
messages=[ |
||||
|
{"role": "user", "content": mulu_prompt.format(title)}, |
||||
|
], |
||||
|
temperature=0.5 |
||||
|
) |
||||
|
|
||||
|
redis_.rpush(redis_key_name_openaikey_list, key_api) |
||||
|
mulu = res.choices[0].message.content |
||||
|
mulu_list = str(mulu).split("\n") |
||||
|
mulu_list = [i.strip() for i in mulu_list if i != ""] |
||||
|
|
||||
|
print(mulu_list) |
||||
|
|
||||
|
cun_bool = False |
||||
|
table_of_contents = [mulu_list[0]] |
||||
|
|
||||
|
for i in mulu_list[1:]: |
||||
|
result_second_biaoti_list = re.findall(pantten_second_biaoti, i) |
||||
|
result_other_biaoti_list = re.findall(pantten_other_biaoti, i) |
||||
|
if result_second_biaoti_list != []: |
||||
|
table_of_contents.append("@@" + i) |
||||
|
cun_bool = True |
||||
|
continue |
||||
|
if cun_bool == False: |
||||
|
continue |
||||
|
else: |
||||
|
if result_other_biaoti_list != []: |
||||
|
table_of_contents.append("@@" + i) |
||||
|
else: |
||||
|
table_of_contents.append(i) |
||||
|
|
||||
|
print(table_of_contents) |
||||
|
# table_of_contents = table_of_contents[:3] + table_of_contents[-1:] |
||||
|
# print(table_of_contents) |
||||
|
|
||||
|
thanks_references_bool_table = table_of_contents[-3:] |
||||
|
|
||||
|
# thanks = "致谢" |
||||
|
# references = "参考文献" |
||||
|
if references in thanks_references_bool_table: |
||||
|
table_of_contents.remove(references) |
||||
|
|
||||
|
if thanks in thanks_references_bool_table: |
||||
|
table_of_contents.remove(thanks) |
||||
|
|
||||
|
table_of_contents.append(thanks) |
||||
|
table_of_contents.append(references) |
||||
|
|
||||
|
# if thanks not in thanks_bool_table: |
||||
|
# table_of_contents.insert(-1, "致谢") |
||||
|
# |
||||
|
# if thanks not in thanks_bool_table: |
||||
|
# table_of_contents.insert(-1, "致谢") |
||||
|
|
||||
|
print(len(table_of_contents)) |
||||
|
|
||||
|
small_task_list = [] |
||||
|
# api_key, |
||||
|
# index, |
||||
|
# title, |
||||
|
# mulu, |
||||
|
# subtitle, |
||||
|
# prompt |
||||
|
kaitibaogao_task = { |
||||
|
"task_type": "kaitibaogao", |
||||
|
"uuid": uuid, |
||||
|
"main_parameter": [title] |
||||
|
} |
||||
|
|
||||
|
chat_abstract_task = { |
||||
|
"task_type": "chat_abstract", |
||||
|
"uuid": uuid, |
||||
|
"main_parameter": [title] |
||||
|
} |
||||
|
small_task_list.append(kaitibaogao_task) |
||||
|
small_task_list.append(chat_abstract_task) |
||||
|
content_index = 0 |
||||
|
while True: |
||||
|
if content_index == len(table_of_contents): |
||||
|
break |
||||
|
subtitle = table_of_contents[content_index] |
||||
|
if content_index == 0: |
||||
|
prompt = first_title_prompt |
||||
|
elif subtitle == "参考文献": |
||||
|
prompt = references_prompt |
||||
|
elif subtitle == "致谢": |
||||
|
prompt = thank_prompt |
||||
|
else: |
||||
|
prompt = small_title_prompt |
||||
|
print("请求的所有参数", |
||||
|
content_index, |
||||
|
title, |
||||
|
subtitle, |
||||
|
prompt) |
||||
|
|
||||
|
paper_content = { |
||||
|
"task_type": "paper_content", |
||||
|
"uuid": uuid, |
||||
|
"main_parameter": [ |
||||
|
content_index, |
||||
|
title, |
||||
|
mulu, |
||||
|
subtitle, |
||||
|
prompt |
||||
|
] |
||||
|
} |
||||
|
|
||||
|
small_task_list.append(paper_content) |
||||
|
content_index += 1 |
||||
|
|
||||
|
for small_task in small_task_list: |
||||
|
small_task = json.dumps(small_task, ensure_ascii=False) |
||||
|
redis_.rpush(redis_small_task, small_task) |
||||
|
|
||||
|
res = { |
||||
|
"uuid": uuid, |
||||
|
"num_small_task": len(small_task_list), |
||||
|
"tasking_num": 0, |
||||
|
"标题": title, |
||||
|
"目录": mulu, |
||||
|
"开题报告": "", |
||||
|
"任务书": "", |
||||
|
"中文摘要": "", |
||||
|
"英文摘要": "", |
||||
|
"中文关键词": "", |
||||
|
"英文关键词": "", |
||||
|
"正文": "", |
||||
|
"致谢": "", |
||||
|
"参考文献": "", |
||||
|
"table_of_contents": [""] * len(table_of_contents) |
||||
|
} |
||||
|
|
||||
|
res = json.dumps(res, ensure_ascii=False) |
||||
|
redis_.hset(redis_res, uuid, res) |
||||
|
|
||||
|
|
||||
|
def threading_1(): |
||||
|
# title, redis_key_name_openaikey_list |
||||
|
''' |
||||
|
生成目录 |
||||
|
:param title: |
||||
|
:param redis_key_name_openaikey_list: |
||||
|
:return: |
||||
|
''' |
||||
|
while True: |
||||
|
if redis_.llen(redis_small_task) != 0: # 若队列中有元素就跳过 |
||||
|
time.sleep(1) |
||||
|
continue |
||||
|
elif redis_.llen(redis_title) != 0 and redis_.llen(redis_key_name_openaikey_list) != 0: |
||||
|
title_uuid_dict_str = redis_.lpop(redis_title).decode('UTF-8') |
||||
|
api_key = redis_.lpop(redis_key_name_openaikey_list).decode('UTF-8') |
||||
|
# redis_title:{"id": id_, "title": title} |
||||
|
title_uuid_dict = json.loads(title_uuid_dict_str) |
||||
|
|
||||
|
title = title_uuid_dict["title"] |
||||
|
uuid_id = title_uuid_dict["id"] |
||||
|
|
||||
|
t = Thread(target=threading_mulu, args=(api_key, |
||||
|
title, |
||||
|
uuid_id, |
||||
|
)) |
||||
|
t.start() |
||||
|
else: |
||||
|
time.sleep(1) |
||||
|
continue |
||||
|
|
||||
|
|
||||
|
def threading_2(): |
||||
|
''' |
||||
|
顺序读取子任务 |
||||
|
:return: |
||||
|
''' |
||||
|
while True: |
||||
|
if redis_.llen(redis_small_task) != 0 and redis_.llen(redis_key_name_openaikey_list) != 0: |
||||
|
# 执行小标题的任务 |
||||
|
api_key = redis_.lpop(redis_key_name_openaikey_list).decode('UTF-8') |
||||
|
small_title = redis_.lpop(redis_small_task).decode('UTF-8') |
||||
|
small_title = json.loads(small_title) |
||||
|
task_type = small_title["task_type"] |
||||
|
uuid = small_title["uuid"] |
||||
|
main_parameter = small_title["main_parameter"] |
||||
|
|
||||
|
# "task_type": "paper_content", |
||||
|
# "uuid": uuid, |
||||
|
# "main_parameter": [ |
||||
|
# "task_type": "paper_content", |
||||
|
# "task_type": "chat_abstract", |
||||
|
# "task_type": "kaitibaogao", |
||||
|
|
||||
|
if task_type == "kaitibaogao": |
||||
|
t = Thread(target=chat_kaitibaogao, args=(api_key, |
||||
|
uuid, |
||||
|
main_parameter |
||||
|
)) |
||||
|
t.start() |
||||
|
elif task_type == "chat_abstract": |
||||
|
t = Thread(target=chat_abstract_keyword, args=(api_key, |
||||
|
uuid, |
||||
|
main_parameter |
||||
|
)) |
||||
|
t.start() |
||||
|
elif task_type == "paper_content": |
||||
|
t = Thread(target=chat_content, args=(api_key, |
||||
|
uuid, |
||||
|
main_parameter |
||||
|
)) |
||||
|
t.start() |
||||
|
|
||||
|
else: |
||||
|
time.sleep(1) |
||||
|
continue |
||||
|
|
||||
|
|
||||
|
def threading_3(): |
||||
|
while True: |
||||
|
res_end_list = [] |
||||
|
res_dict = redis_.hgetall(redis_res) |
||||
|
for key, values in res_dict.items(): |
||||
|
values_dict = json.loads(values) |
||||
|
# "num_small_task": len(small_task_list) - 1, |
||||
|
# "tasking_num": 0, |
||||
|
print(values_dict["num_small_task"]) |
||||
|
print(values_dict["tasking_num"]) |
||||
|
if int(values_dict["num_small_task"]) == int(values_dict["tasking_num"]): |
||||
|
res_end_list.append(key) |
||||
|
for key in res_end_list: |
||||
|
redis_.hdel(redis_res, key) |
||||
|
print(res_dict[key].decode("utf-8")) |
||||
|
res_str = res_dict[key].decode("utf-8") |
||||
|
json_str = json.dumps(res_str, indent=4, ensure_ascii=False) |
||||
|
print(project_data_txt_path) |
||||
|
print(key) |
||||
|
key = str(key, encoding="utf-8") |
||||
|
uuid_path = os.path.join(project_data_txt_path, key) |
||||
|
|
||||
|
print("uuid", key) |
||||
|
os.makedirs(uuid_path) |
||||
|
print("uuid_path", os.path.exists(uuid_path)) |
||||
|
paper_content_path = os.path.join(uuid_path, "paper_content.json") |
||||
|
with open(paper_content_path, 'w') as json_file: |
||||
|
json_file.write(json_str) |
||||
|
|
||||
|
|
||||
|
def main(title): |
||||
|
# print(request.remote_addr) |
||||
|
# title = request.json["title"] |
||||
|
|
||||
|
id_ = str(uuid.uuid1()) |
||||
|
print(id_) |
||||
|
redis_.rpush(redis_title, json.dumps({"id": id_, "title": title})) # 加入redis |
||||
|
# return_text = {"texts": {'id': id_, }, "probabilities": None, "status_code": 200} |
||||
|
|
||||
|
# threading_1 # 根据标题获取子任务,存入子任务序列 |
||||
|
# threading_2 # 根据子任务生成结果,存入结果序列 |
||||
|
# threading_3 # 根据存储的结果序列,看是否完成,如果完成输出json文件以及word |
||||
|
t = Thread(target=threading_1) |
||||
|
t.start() |
||||
|
t = Thread(target=threading_2) |
||||
|
t.start() |
||||
|
t = Thread(target=threading_3) |
||||
|
t.start() |
||||
|
|
||||
|
|
||||
|
if __name__ == '__main__': |
||||
|
main("大型商业建筑人员疏散设计研究") |
Loading…
Reference in new issue