
14 changed files with 1755 additions and 789 deletions
@ -0,0 +1,803 @@ |
|||||
|
from flask import Flask, jsonify, Response |
||||
|
from flask import request |
||||
|
import redis |
||||
|
import uuid |
||||
|
import json |
||||
|
import time |
||||
|
import threading |
||||
|
from threading import Thread |
||||
|
from flask import send_file, send_from_directory |
||||
|
import os |
||||
|
from flask import make_response |
||||
|
import openai |
||||
|
import base64 |
||||
|
import re |
||||
|
import urllib.parse as pa |
||||
|
import socket |
||||
|
from serve_config_1 import Config |
||||
|
import requests |
||||
|
|
||||
|
|
||||
|
config = Config() |
||||
|
|
||||
|
app = Flask(__name__) |
||||
|
app.config["JSON_AS_ASCII"] = False |
||||
|
|
||||
|
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) |
||||
|
s.connect(("8.8.8.8", 80)) |
||||
|
localhostip = s.getsockname()[0] |
||||
|
|
||||
|
lock = threading.RLock() |
||||
|
pool = redis.ConnectionPool(host=config.reids_ip, port=config.reids_port, max_connections=50, db=config.reids_db, password=config.reids_password) |
||||
|
redis_ = redis.Redis(connection_pool=pool, decode_responses=True) |
||||
|
|
||||
|
thanks = "致谢" |
||||
|
references = "参考文献" |
||||
|
|
||||
|
flask_serves_env = "http://{}:{}".format(localhostip,config.flask_port) |
||||
|
|
||||
|
paper_download_url = flask_serves_env + "/download?filename_path={}/paper.docx" |
||||
|
paper_start_download_url = flask_serves_env + "/download?filename_path={}/paper_start.docx" |
||||
|
|
||||
|
redis_key_name_openaikey_bad_dict = "openaikey_bad_list_{}".format(str(localhostip)) |
||||
|
|
||||
|
redis_key_name_openaikey_list = "openaikey_list_{}".format(str(localhostip)) |
||||
|
|
||||
|
redis_title = "redis_title" |
||||
|
|
||||
|
redis_title_ing = "redis_title_ing" |
||||
|
|
||||
|
redis_small_task = "redis_small_task" |
||||
|
|
||||
|
redis_res = "redis_res" |
||||
|
|
||||
|
for i in config.openaikey_list: |
||||
|
redis_.rpush(redis_key_name_openaikey_list, i) |
||||
|
|
||||
|
redis_.hset(redis_key_name_openaikey_bad_dict, "1", "1") |
||||
|
redis_.persist(redis_key_name_openaikey_list) |
||||
|
redis_.persist(redis_key_name_openaikey_bad_dict) |
||||
|
|
||||
|
|
||||
|
def request_api_chatgpt(api_key, prompt): |
||||
|
OPENAI_API_KEY = api_key |
||||
|
url = "https://api.openai.com/v1/chat/completions" |
||||
|
headers = { |
||||
|
"Content-Type": "application/json", |
||||
|
"Authorization": f"Bearer {OPENAI_API_KEY}" |
||||
|
} |
||||
|
data = { |
||||
|
"model": "gpt-3.5-turbo", |
||||
|
"messages": [ |
||||
|
{"role": "user", "content": prompt}, |
||||
|
], |
||||
|
"temperature": 0.5 |
||||
|
} |
||||
|
response = requests.post(url, |
||||
|
headers=headers, |
||||
|
data=json.dumps(data), |
||||
|
timeout=240) |
||||
|
|
||||
|
return response |
||||
|
|
||||
|
def chat_kaitibaogao(api_key, uuid, main_parameter,task_type): |
||||
|
|
||||
|
try: |
||||
|
response =request_api_chatgpt(api_key, config.kaitibaogao_prompt.format(main_parameter[0])) |
||||
|
res = response.json() |
||||
|
kaitibaogao = res["choices"][0]["message"]["content"] |
||||
|
redis_.rpush(redis_key_name_openaikey_list, api_key) |
||||
|
redis_.persist(redis_key_name_openaikey_list) |
||||
|
|
||||
|
except: |
||||
|
""" |
||||
|
发送警报 |
||||
|
""" |
||||
|
kaitibaogao = "" |
||||
|
|
||||
|
kaitibaogao_task = { |
||||
|
"task_type": task_type, |
||||
|
"uuid": uuid, |
||||
|
"main_parameter": main_parameter |
||||
|
} |
||||
|
time.sleep(3) |
||||
|
small_task = json.dumps(kaitibaogao_task, ensure_ascii=False) |
||||
|
redis_.lpush(redis_small_task, small_task) |
||||
|
|
||||
|
redis_.rpush(redis_key_name_openaikey_list, api_key) |
||||
|
redis_.persist(redis_key_name_openaikey_list) |
||||
|
|
||||
|
redis_.hset(redis_key_name_openaikey_bad_dict, uuid, str((api_key,task_type))) |
||||
|
return |
||||
|
|
||||
|
lock.acquire() |
||||
|
res_dict_str = redis_.hget(redis_res, uuid) |
||||
|
res_dict = json.loads(res_dict_str) |
||||
|
res_dict["tasking_num"] += 1 |
||||
|
print("子任务进度".format(uuid),res_dict["tasking_num"]) |
||||
|
res_dict["开题报告"] = kaitibaogao |
||||
|
res_dict_str = json.dumps(res_dict, ensure_ascii=False) |
||||
|
redis_.hset(redis_res, uuid, res_dict_str) |
||||
|
lock.release() |
||||
|
|
||||
|
|
||||
|
def chat_abstract_keyword(api_key, uuid, main_parameter, task_type): |
||||
|
|
||||
|
try: |
||||
|
# 生成中文摘要 |
||||
|
|
||||
|
response =request_api_chatgpt(api_key, config.chinese_abstract_prompt.format(main_parameter[0])) |
||||
|
res = response.json() |
||||
|
chinese_abstract = res["choices"][0]["message"]["content"] |
||||
|
|
||||
|
# 生成英文的摘要 |
||||
|
|
||||
|
response = request_api_chatgpt(api_key, config.english_abstract_prompt.format(chinese_abstract)) |
||||
|
res = response.json() |
||||
|
english_abstract = res["choices"][0]["message"]["content"] |
||||
|
|
||||
|
|
||||
|
# 生成中文关键字 |
||||
|
|
||||
|
response = request_api_chatgpt(api_key, config.chinese_keyword_prompt.format(chinese_abstract)) |
||||
|
res = response.json() |
||||
|
chinese_keyword = res["choices"][0]["message"]["content"] |
||||
|
|
||||
|
|
||||
|
# 生成英文关键字 |
||||
|
response = request_api_chatgpt(api_key, config.english_keyword_prompt.format(chinese_keyword)) |
||||
|
res = response.json() |
||||
|
english_keyword = res["choices"][0]["message"]["content"] |
||||
|
|
||||
|
redis_.rpush(redis_key_name_openaikey_list, api_key) |
||||
|
redis_.persist(redis_key_name_openaikey_list) |
||||
|
except: |
||||
|
""" |
||||
|
发送警报 |
||||
|
""" |
||||
|
chinese_abstract = "" |
||||
|
english_abstract = "" |
||||
|
chinese_keyword = "" |
||||
|
english_keyword = "" |
||||
|
|
||||
|
chat_abstract_task = { |
||||
|
"task_type": task_type, |
||||
|
"uuid": uuid, |
||||
|
"main_parameter": main_parameter |
||||
|
} |
||||
|
time.sleep(3) |
||||
|
small_task = json.dumps(chat_abstract_task, ensure_ascii=False) |
||||
|
redis_.lpush(redis_small_task, small_task) |
||||
|
|
||||
|
redis_.rpush(redis_key_name_openaikey_list, api_key) |
||||
|
redis_.persist(redis_key_name_openaikey_list) |
||||
|
|
||||
|
redis_.hset(redis_key_name_openaikey_bad_dict, uuid, str((api_key,task_type))) |
||||
|
return |
||||
|
|
||||
|
paper_abstract_keyword = { |
||||
|
"中文摘要": chinese_abstract, |
||||
|
"英文摘要": english_abstract, |
||||
|
"中文关键词": chinese_keyword, |
||||
|
"英文关键词": english_keyword |
||||
|
} |
||||
|
|
||||
|
# json_str = json.dumps(paper_abstract_keyword, indent=4, ensure_ascii=False) |
||||
|
# abstract_keyword_path = os.path.join(uuid_path, "abstract_keyword.json") |
||||
|
# with open(abstract_keyword_path, 'w') as json_file: |
||||
|
# json_file.write(json_str) |
||||
|
# |
||||
|
# lock.acquire() |
||||
|
# api_key_list.append(api_key) |
||||
|
# lock.release() |
||||
|
|
||||
|
lock.acquire() |
||||
|
res_dict_str = redis_.hget(redis_res, uuid) |
||||
|
res_dict = json.loads(res_dict_str) |
||||
|
res_dict["tasking_num"] += 1 |
||||
|
print("子任务进度".format(uuid),res_dict["tasking_num"]) |
||||
|
res_dict["中文摘要"] = paper_abstract_keyword["中文摘要"] |
||||
|
res_dict["英文摘要"] = paper_abstract_keyword["英文摘要"] |
||||
|
res_dict["中文关键词"] = paper_abstract_keyword["中文关键词"] |
||||
|
res_dict["英文关键词"] = paper_abstract_keyword["英文关键词"] |
||||
|
res_dict_str = json.dumps(res_dict, ensure_ascii=False) |
||||
|
redis_.hset(redis_res, uuid, res_dict_str) |
||||
|
lock.release() |
||||
|
|
||||
|
|
||||
|
def chat_content(api_key, uuid, main_parameter, task_type): |
||||
|
''' |
||||
|
|
||||
|
:param api_key: |
||||
|
:param uuid: |
||||
|
:param main_parameter: |
||||
|
:return: |
||||
|
''' |
||||
|
content_index = main_parameter[0] |
||||
|
title = main_parameter[1] |
||||
|
mulu = main_parameter[2] |
||||
|
subtitle = main_parameter[3] |
||||
|
prompt = main_parameter[4] |
||||
|
|
||||
|
if subtitle[:2] == "@@": |
||||
|
res_content = subtitle[2:] |
||||
|
redis_.rpush(redis_key_name_openaikey_list, api_key) |
||||
|
redis_.persist(redis_key_name_openaikey_list) |
||||
|
else: |
||||
|
try: |
||||
|
|
||||
|
response = request_api_chatgpt(api_key, prompt.format(title, mulu, subtitle)) |
||||
|
res = response.json() |
||||
|
res_content = res["choices"][0]["message"]["content"] |
||||
|
|
||||
|
redis_.rpush(redis_key_name_openaikey_list, api_key) |
||||
|
redis_.persist(redis_key_name_openaikey_list) |
||||
|
except: |
||||
|
""" |
||||
|
发送警报 |
||||
|
""" |
||||
|
res_content = "" |
||||
|
paper_content = { |
||||
|
"task_type": "paper_content", |
||||
|
"uuid": uuid, |
||||
|
"main_parameter": main_parameter |
||||
|
} |
||||
|
time.sleep(3) |
||||
|
small_task = json.dumps(paper_content, ensure_ascii=False) |
||||
|
redis_.lpush(redis_small_task, small_task) |
||||
|
|
||||
|
redis_.rpush(redis_key_name_openaikey_list, api_key) |
||||
|
redis_.persist(redis_key_name_openaikey_list) |
||||
|
|
||||
|
redis_.hset(redis_key_name_openaikey_bad_dict, uuid, str((api_key, task_type))) |
||||
|
return |
||||
|
|
||||
|
lock.acquire() |
||||
|
res_dict_str = redis_.hget(redis_res, uuid) |
||||
|
res_dict = json.loads(res_dict_str) |
||||
|
res_dict["tasking_num"] += 1 |
||||
|
print("子任务进度".format(uuid), res_dict["tasking_num"]) |
||||
|
table_of_contents = res_dict["table_of_contents"] |
||||
|
table_of_contents[content_index] = res_content |
||||
|
res_dict["table_of_contents"] = table_of_contents |
||||
|
res_dict_str = json.dumps(res_dict, ensure_ascii=False) |
||||
|
redis_.hset(redis_res, uuid, res_dict_str) |
||||
|
lock.release() |
||||
|
|
||||
|
|
||||
|
def chat_thanks(api_key, uuid, main_parameter, task_type): |
||||
|
''' |
||||
|
|
||||
|
:param api_key: |
||||
|
:param uuid: |
||||
|
:param main_parameter: |
||||
|
:return: |
||||
|
''' |
||||
|
# title, |
||||
|
# thank_prompt |
||||
|
title = main_parameter[0] |
||||
|
prompt = main_parameter[1] |
||||
|
|
||||
|
try: |
||||
|
response = request_api_chatgpt(api_key, prompt.format(title)) |
||||
|
res = response.json() |
||||
|
res_content = res["choices"][0]["message"]["content"] |
||||
|
|
||||
|
redis_.rpush(redis_key_name_openaikey_list, api_key) |
||||
|
redis_.persist(redis_key_name_openaikey_list) |
||||
|
except: |
||||
|
""" |
||||
|
发送警报 |
||||
|
""" |
||||
|
res_content = "" |
||||
|
thanks_task = { |
||||
|
"task_type": "thanks_task", |
||||
|
"uuid": uuid, |
||||
|
"main_parameter": main_parameter |
||||
|
} |
||||
|
time.sleep(3) |
||||
|
small_task = json.dumps(thanks_task, ensure_ascii=False) |
||||
|
redis_.lpush(redis_small_task, small_task) |
||||
|
|
||||
|
redis_.rpush(redis_key_name_openaikey_list, api_key) |
||||
|
redis_.persist(redis_key_name_openaikey_list) |
||||
|
|
||||
|
redis_.hset(redis_key_name_openaikey_bad_dict, uuid, str((api_key, task_type))) |
||||
|
return |
||||
|
|
||||
|
lock.acquire() |
||||
|
res_dict_str = redis_.hget(redis_res, uuid) |
||||
|
res_dict = json.loads(res_dict_str) |
||||
|
res_dict["tasking_num"] += 1 |
||||
|
print("子任务进度".format(uuid), res_dict["tasking_num"]) |
||||
|
res_dict["致谢"] = res_content |
||||
|
res_dict_str = json.dumps(res_dict, ensure_ascii=False) |
||||
|
redis_.hset(redis_res, uuid, res_dict_str) |
||||
|
lock.release() |
||||
|
|
||||
|
|
||||
|
def chat_references(api_key, uuid, main_parameter, task_type): |
||||
|
''' |
||||
|
|
||||
|
:param api_key: |
||||
|
:param uuid: |
||||
|
:param main_parameter: |
||||
|
:return: |
||||
|
''' |
||||
|
# title, |
||||
|
# mulu, |
||||
|
# references_prompt |
||||
|
title = main_parameter[0] |
||||
|
mulu = main_parameter[1] |
||||
|
prompt = main_parameter[2] |
||||
|
try: |
||||
|
|
||||
|
response = request_api_chatgpt(api_key, prompt.format(title, mulu)) |
||||
|
res = response.json() |
||||
|
res_content = res["choices"][0]["message"]["content"] |
||||
|
|
||||
|
redis_.rpush(redis_key_name_openaikey_list, api_key) |
||||
|
redis_.persist(redis_key_name_openaikey_list) |
||||
|
except: |
||||
|
""" |
||||
|
发送警报 |
||||
|
""" |
||||
|
res_content = "" |
||||
|
|
||||
|
references_task = { |
||||
|
"task_type": "references_task", |
||||
|
"uuid": uuid, |
||||
|
"main_parameter": [ |
||||
|
title, |
||||
|
mulu, |
||||
|
config.references_prompt |
||||
|
] |
||||
|
} |
||||
|
time.sleep(3) |
||||
|
small_task = json.dumps(references_task, ensure_ascii=False) |
||||
|
redis_.lpush(redis_small_task, small_task) |
||||
|
|
||||
|
redis_.rpush(redis_key_name_openaikey_list, api_key) |
||||
|
redis_.persist(redis_key_name_openaikey_list) |
||||
|
|
||||
|
redis_.hset(redis_key_name_openaikey_bad_dict, uuid, str((api_key, task_type))) |
||||
|
return |
||||
|
|
||||
|
# 加锁 读取resis并存储结果 |
||||
|
lock.acquire() |
||||
|
res_dict_str = redis_.hget(redis_res, uuid) |
||||
|
res_dict = json.loads(res_dict_str) |
||||
|
res_dict["tasking_num"] += 1 |
||||
|
print("子任务进度".format(uuid), res_dict["tasking_num"]) |
||||
|
res_dict["参考文献"] = res_content |
||||
|
res_dict_str = json.dumps(res_dict, ensure_ascii=False) |
||||
|
redis_.hset(redis_res, uuid, res_dict_str) |
||||
|
lock.release() |
||||
|
|
||||
|
|
||||
|
def threading_mulu(api_key, title, uuid): |
||||
|
''' |
||||
|
生成目录并吧任务拆解进入子任务的redis_list中和储存结果的redis_list中 |
||||
|
:return: |
||||
|
''' |
||||
|
try: |
||||
|
response = request_api_chatgpt(api_key, config.mulu_prompt.format(title)) |
||||
|
res = response.json() |
||||
|
mulu = res["choices"][0]["message"]["content"] |
||||
|
|
||||
|
redis_.rpush(redis_key_name_openaikey_list, api_key) |
||||
|
redis_.persist(redis_key_name_openaikey_list) |
||||
|
except: |
||||
|
""" |
||||
|
发送警报 |
||||
|
""" |
||||
|
res_content = "" |
||||
|
time.sleep(3) |
||||
|
redis_.lpush(redis_title, json.dumps({"id": uuid, "title": title}, ensure_ascii=False)) # 加入redis |
||||
|
redis_.persist(redis_key_name_openaikey_list) |
||||
|
|
||||
|
redis_.rpush(redis_key_name_openaikey_list, api_key) |
||||
|
redis_.persist(redis_key_name_openaikey_list) |
||||
|
|
||||
|
redis_.hset(redis_key_name_openaikey_bad_dict, uuid, str(api_key,"mulu")) |
||||
|
return |
||||
|
|
||||
|
try: |
||||
|
mulu_list = str(mulu).split("\n") |
||||
|
mulu_list = [i.strip() for i in mulu_list if i != ""] |
||||
|
|
||||
|
print(mulu_list) |
||||
|
|
||||
|
cun_bool = False |
||||
|
table_of_contents = [mulu_list[0]] |
||||
|
|
||||
|
for i in mulu_list[1:]: |
||||
|
result_second_biaoti_list = re.findall(config.pantten_second_biaoti, i) |
||||
|
result_other_biaoti_list = re.findall(config.pantten_other_biaoti, i) |
||||
|
if result_second_biaoti_list != []: |
||||
|
table_of_contents.append("@@" + i) |
||||
|
cun_bool = True |
||||
|
continue |
||||
|
if cun_bool == False: |
||||
|
continue |
||||
|
else: |
||||
|
if result_other_biaoti_list != []: |
||||
|
table_of_contents.append("@@" + i) |
||||
|
else: |
||||
|
table_of_contents.append(i) |
||||
|
|
||||
|
print(table_of_contents) |
||||
|
# table_of_contents = table_of_contents[:3] + table_of_contents[-1:] |
||||
|
# print(table_of_contents) |
||||
|
|
||||
|
thanks_references_bool_table = table_of_contents[-3:] |
||||
|
|
||||
|
# thanks = "致谢" |
||||
|
# references = "参考文献" |
||||
|
if references in thanks_references_bool_table: |
||||
|
table_of_contents.remove(references) |
||||
|
|
||||
|
if thanks in thanks_references_bool_table: |
||||
|
table_of_contents.remove(thanks) |
||||
|
|
||||
|
# table_of_contents.append(thanks) |
||||
|
# table_of_contents.append(references) |
||||
|
|
||||
|
# if thanks not in thanks_bool_table: |
||||
|
# table_of_contents.insert(-1, "致谢") |
||||
|
# |
||||
|
# if thanks not in thanks_bool_table: |
||||
|
# table_of_contents.insert(-1, "致谢") |
||||
|
|
||||
|
print(len(table_of_contents)) |
||||
|
|
||||
|
small_task_list = [] |
||||
|
# api_key, |
||||
|
# index, |
||||
|
# title, |
||||
|
# mulu, |
||||
|
# subtitle, |
||||
|
# prompt |
||||
|
kaitibaogao_task = { |
||||
|
"task_type": "kaitibaogao", |
||||
|
"uuid": uuid, |
||||
|
"main_parameter": [title] |
||||
|
} |
||||
|
|
||||
|
chat_abstract_task = { |
||||
|
"task_type": "chat_abstract", |
||||
|
"uuid": uuid, |
||||
|
"main_parameter": [title] |
||||
|
} |
||||
|
small_task_list.append(kaitibaogao_task) |
||||
|
small_task_list.append(chat_abstract_task) |
||||
|
content_index = 0 |
||||
|
while True: |
||||
|
if content_index == len(table_of_contents): |
||||
|
break |
||||
|
subtitle = table_of_contents[content_index] |
||||
|
if content_index == 0: |
||||
|
prompt = config.first_title_prompt |
||||
|
elif subtitle == "参考文献": |
||||
|
prompt = config.references_prompt |
||||
|
elif subtitle == "致谢": |
||||
|
prompt = config.thank_prompt |
||||
|
else: |
||||
|
prompt = config.small_title_prompt |
||||
|
print("请求的所有参数", |
||||
|
content_index, |
||||
|
title, |
||||
|
subtitle, |
||||
|
prompt) |
||||
|
|
||||
|
paper_content = { |
||||
|
"task_type": "paper_content", |
||||
|
"uuid": uuid, |
||||
|
"main_parameter": [ |
||||
|
content_index, |
||||
|
title, |
||||
|
mulu, |
||||
|
subtitle, |
||||
|
prompt |
||||
|
] |
||||
|
} |
||||
|
|
||||
|
small_task_list.append(paper_content) |
||||
|
content_index += 1 |
||||
|
|
||||
|
thanks_task = { |
||||
|
"task_type": "thanks_task", |
||||
|
"uuid": uuid, |
||||
|
"main_parameter": [ |
||||
|
title, |
||||
|
config.thank_prompt |
||||
|
] |
||||
|
} |
||||
|
|
||||
|
references_task = { |
||||
|
"task_type": "references_task", |
||||
|
"uuid": uuid, |
||||
|
"main_parameter": [ |
||||
|
title, |
||||
|
mulu, |
||||
|
config.references_prompt |
||||
|
] |
||||
|
} |
||||
|
|
||||
|
small_task_list.append(thanks_task) |
||||
|
small_task_list.append(references_task) |
||||
|
|
||||
|
for small_task in small_task_list: |
||||
|
small_task = json.dumps(small_task, ensure_ascii=False) |
||||
|
redis_.rpush(redis_small_task, small_task) |
||||
|
|
||||
|
|
||||
|
res = { |
||||
|
"uuid": uuid, |
||||
|
"num_small_task": len(small_task_list), |
||||
|
"tasking_num": 0, |
||||
|
"标题": title, |
||||
|
"目录": mulu, |
||||
|
"开题报告": "", |
||||
|
"任务书": "", |
||||
|
"中文摘要": "", |
||||
|
"英文摘要": "", |
||||
|
"中文关键词": "", |
||||
|
"英文关键词": "", |
||||
|
"正文": "", |
||||
|
"致谢": "", |
||||
|
"参考文献": "", |
||||
|
"table_of_contents": [""] * len(table_of_contents) |
||||
|
} |
||||
|
|
||||
|
res = json.dumps(res, ensure_ascii=False) |
||||
|
redis_.hset(redis_res, uuid, res) |
||||
|
except: |
||||
|
print("目录程序错误") |
||||
|
|
||||
|
|
||||
|
def threading_1(): |
||||
|
# title, redis_key_name_openaikey_list |
||||
|
''' |
||||
|
生成目录 |
||||
|
:param title: |
||||
|
:param redis_key_name_openaikey_list: |
||||
|
:return: |
||||
|
''' |
||||
|
while True: |
||||
|
if redis_.llen(redis_small_task) != 0: # 若队列中有元素就跳过 |
||||
|
time.sleep(1) |
||||
|
continue |
||||
|
elif redis_.llen(redis_title) != 0 and redis_.llen(redis_key_name_openaikey_list) != 0: |
||||
|
title_uuid_dict_str = redis_.lpop(redis_title).decode('UTF-8') |
||||
|
api_key = redis_.lpop(redis_key_name_openaikey_list).decode('UTF-8') |
||||
|
# redis_title:{"id": id_, "title": title} |
||||
|
title_uuid_dict = json.loads(title_uuid_dict_str) |
||||
|
|
||||
|
title = title_uuid_dict["title"] |
||||
|
uuid_id = title_uuid_dict["id"] |
||||
|
|
||||
|
t = Thread(target=threading_mulu, args=(api_key, |
||||
|
title, |
||||
|
uuid_id, |
||||
|
)) |
||||
|
t.start() |
||||
|
else: |
||||
|
time.sleep(1) |
||||
|
continue |
||||
|
|
||||
|
|
||||
|
def threading_2(): |
||||
|
''' |
||||
|
顺序读取子任务 |
||||
|
:return: |
||||
|
''' |
||||
|
while True: |
||||
|
if redis_.llen(redis_small_task) != 0 and redis_.llen(redis_key_name_openaikey_list) != 0: |
||||
|
# 执行小标题的任务 |
||||
|
api_key = redis_.lpop(redis_key_name_openaikey_list).decode('UTF-8') |
||||
|
small_title = redis_.lpop(redis_small_task).decode('UTF-8') |
||||
|
small_title = json.loads(small_title) |
||||
|
task_type = small_title["task_type"] |
||||
|
uuid = small_title["uuid"] |
||||
|
main_parameter = small_title["main_parameter"] |
||||
|
|
||||
|
# "task_type": "paper_content", |
||||
|
# "uuid": uuid, |
||||
|
# "main_parameter": [ |
||||
|
# "task_type": "paper_content", |
||||
|
# "task_type": "chat_abstract", |
||||
|
# "task_type": "kaitibaogao", |
||||
|
|
||||
|
if task_type == "kaitibaogao": |
||||
|
t = Thread(target=chat_kaitibaogao, args=(api_key, |
||||
|
uuid, |
||||
|
main_parameter, |
||||
|
task_type)) |
||||
|
t.start() |
||||
|
elif task_type == "chat_abstract": |
||||
|
t = Thread(target=chat_abstract_keyword, args=(api_key, |
||||
|
uuid, |
||||
|
main_parameter, |
||||
|
task_type)) |
||||
|
t.start() |
||||
|
elif task_type == "paper_content": |
||||
|
t = Thread(target=chat_content, args=(api_key, |
||||
|
uuid, |
||||
|
main_parameter, |
||||
|
task_type)) |
||||
|
t.start() |
||||
|
elif task_type == "thanks_task": |
||||
|
t = Thread(target=chat_thanks, args=(api_key, |
||||
|
uuid, |
||||
|
main_parameter, |
||||
|
task_type)) |
||||
|
t.start() |
||||
|
elif task_type == "references_task": |
||||
|
t = Thread(target=chat_references, args=(api_key, |
||||
|
uuid, |
||||
|
main_parameter, |
||||
|
task_type)) |
||||
|
t.start() |
||||
|
else: |
||||
|
time.sleep(1) |
||||
|
continue |
||||
|
|
||||
|
|
||||
|
def threading_3(): |
||||
|
while True: |
||||
|
res_end_list = [] |
||||
|
res_dict = redis_.hgetall(redis_res) |
||||
|
for key, values in res_dict.items(): |
||||
|
values_dict = json.loads(values) |
||||
|
# "num_small_task": len(small_task_list) - 1, |
||||
|
# "tasking_num": 0, |
||||
|
if int(values_dict["num_small_task"]) == int(values_dict["tasking_num"]): |
||||
|
res_end_list.append(key) |
||||
|
if res_end_list != []: |
||||
|
for key in res_end_list: |
||||
|
redis_.hdel(redis_res, key) |
||||
|
|
||||
|
res_str = res_dict[key].decode("utf-8") |
||||
|
json_str = json.dumps(res_str, indent=4, ensure_ascii=False) |
||||
|
|
||||
|
key = str(key, encoding="utf-8") |
||||
|
uuid_path = os.path.join(config.project_data_txt_path, key) |
||||
|
|
||||
|
os.makedirs(uuid_path) |
||||
|
|
||||
|
paper_content_path = os.path.join(uuid_path, "paper_content.json") |
||||
|
with open(paper_content_path, 'w') as json_file: |
||||
|
json_file.write(json_str) |
||||
|
|
||||
|
save_word_paper = os.path.join(uuid_path, "paper.docx") |
||||
|
save_word_paper_start = os.path.join(uuid_path, "paper_start.docx") |
||||
|
print("java_path", paper_content_path, ) |
||||
|
os.system( |
||||
|
"java -Dfile.encoding=UTF-8 -jar '/home/majiahui/ChatGPT_Sever/aiXieZuoPro.jar' '{}' '{}' '{}'".format( |
||||
|
paper_content_path, |
||||
|
save_word_paper, |
||||
|
save_word_paper_start)) |
||||
|
|
||||
|
url_path_paper = paper_download_url.format(key) |
||||
|
url_path_kaiti = paper_start_download_url.format(key) |
||||
|
return_text = str({"id": key, |
||||
|
"content_url_path": url_path_paper, |
||||
|
"content_report_url_path": url_path_kaiti, |
||||
|
"probabilities": None, |
||||
|
"status_code": 200}) |
||||
|
redis_.srem(redis_title_ing, key) |
||||
|
redis_.set(key, return_text, 28800) |
||||
|
|
||||
|
time.sleep(1) |
||||
|
|
||||
|
|
||||
|
# def main(title): |
||||
|
# # print(request.remote_addr) |
||||
|
# # title = request.json["title"] |
||||
|
# |
||||
|
# id_ = str(uuid.uuid1()) |
||||
|
# print(id_) |
||||
|
# redis_.rpush(redis_title, json.dumps({"id": id_, "title": title})) # 加入redis |
||||
|
|
||||
|
|
||||
|
@app.route("/chat", methods=["POST"]) |
||||
|
def chat(): |
||||
|
print(request.remote_addr) |
||||
|
title = request.json["title"] |
||||
|
id_ = str(uuid.uuid1()) |
||||
|
print(id_) |
||||
|
redis_.rpush(redis_title, json.dumps({"id": id_, "title": title},ensure_ascii=False)) # 加入redis |
||||
|
redis_.persist(redis_key_name_openaikey_list) |
||||
|
return_text = {"texts": {'id': id_, }, "probabilities": None, "status_code": 200} |
||||
|
print("ok") |
||||
|
redis_.sadd(redis_title_ing, id_) |
||||
|
|
||||
|
return jsonify(return_text) # 返回结果 |
||||
|
|
||||
|
|
||||
|
@app.route("/download", methods=['GET']) |
||||
|
def download_file(): |
||||
|
# 需要知道2个参数, 第1个参数是本地目录的path, 第2个参数是文件名(带扩展名) |
||||
|
# directory = os.path.join(project_data_txt_path, filename) # 假设在当前目录 |
||||
|
|
||||
|
# uuid_path, word_name = str(filename).split("/") |
||||
|
# word_path_root = os.path.join(project_data_txt_path, uuid_path) |
||||
|
# response = make_response(send_from_directory(word_path_root, word_name, as_attachment=True)) |
||||
|
# response.headers["Content-Disposition"] = "attachment; filename={}".format(filename.encode().decode('latin-1')) |
||||
|
filename_path = request.args.get('filename_path', '') |
||||
|
filename = filename_path.split("/")[1] |
||||
|
path_name = os.path.join(config.project_data_txt_path, filename_path) |
||||
|
with open(path_name, 'rb') as f: |
||||
|
stream = f.read() |
||||
|
response = Response(stream, content_type='application/octet-stream') |
||||
|
response.headers['Content-disposition'] = 'attachment; filename={}'.format(filename) |
||||
|
return response |
||||
|
|
||||
|
|
||||
|
@app.route("/search", methods=["POST"]) |
||||
|
def search(): |
||||
|
id_ = request.json['id'] # 获取用户query中的文本 例如"I love you" |
||||
|
result = redis_.get(id_) # 获取该query的模型结果 |
||||
|
|
||||
|
# if redis_.hexists(redis_key_name_openaikey_bad_dict, id_) == True: |
||||
|
# result_text = {'code': "204", 'text': "", 'probabilities': None} |
||||
|
if result is not None: |
||||
|
# redis_.delete(id_) |
||||
|
# result_dict = result.decode('UTF-8') |
||||
|
|
||||
|
result_dict = eval(result) |
||||
|
# return_text = {"id":query_id, "load_result_path": load_result_path, "probabilities": None, "status_code": 200} |
||||
|
query_id = result_dict["id"] |
||||
|
# "content_url_path": url_path_paper, |
||||
|
# "content_report_url_path": url_path_kaiti, |
||||
|
content_url_path = result_dict["content_url_path"] |
||||
|
content_report_url_path = result_dict["content_report_url_path"] |
||||
|
probabilities = result_dict["probabilities"] |
||||
|
result_text = {'code': 200, |
||||
|
'content_url_path': content_url_path, |
||||
|
'content_report_url_path': content_report_url_path, |
||||
|
'probabilities': probabilities} |
||||
|
else: |
||||
|
querying_list = list(redis_.smembers(redis_title_ing)) |
||||
|
querying_set = set() |
||||
|
for i in querying_list: |
||||
|
querying_set.add(i.decode()) |
||||
|
|
||||
|
querying_bool = False |
||||
|
if id_ in querying_set: |
||||
|
querying_bool = True |
||||
|
|
||||
|
query_list_json = redis_.lrange(redis_title, 0, -1) |
||||
|
query_set_ids = set() |
||||
|
for i in query_list_json: |
||||
|
data_dict = json.loads(i) |
||||
|
query_id = data_dict['id'] |
||||
|
query_set_ids.add(query_id) |
||||
|
|
||||
|
query_bool = False |
||||
|
if id_ in query_set_ids: |
||||
|
query_bool = True |
||||
|
|
||||
|
if querying_bool == True and query_bool == True: |
||||
|
result_text = {'code': "201", 'text': "", 'probabilities': None} |
||||
|
elif querying_bool == True and query_bool == False: |
||||
|
result_text = {'code': "202", 'text': "", 'probabilities': None} |
||||
|
else: |
||||
|
result_text = {'code': "203", 'text': "", 'probabilities': None} |
||||
|
return jsonify(result_text) # 返回结果 |
||||
|
|
||||
|
|
||||
|
# threading_1 # 根据标题获取子任务,存入子任务序列 |
||||
|
# threading_2 # 根据子任务生成结果,存入结果序列 |
||||
|
# threading_3 # 根据存储的结果序列,看是否完成,如果完成输出json文件以及word |
||||
|
t = Thread(target=threading_1) |
||||
|
t.start() |
||||
|
t = Thread(target=threading_2) |
||||
|
t.start() |
||||
|
t = Thread(target=threading_3) |
||||
|
t.start() |
||||
|
|
||||
|
if __name__ == '__main__': |
||||
|
# main("大型商业建筑人员疏散设计研究") |
||||
|
app.run(host="0.0.0.0", port=config.flask_port, threaded=True, debug=False) |
@ -0,0 +1,3 @@ |
|||||
|
国外服务器1 104.244.89.190 |
||||
|
国外服务器2 107.182.189.58 |
||||
|
国外服务器3 104.244.90.248 |
@ -0,0 +1 @@ |
|||||
|
nohup python flask_serve_1.py > myout.file_1 2>&1 & |
@ -1,45 +1,40 @@ |
|||||
|
|
||||
|
|
||||
class Config: |
class Config: |
||||
def __init__(self): |
def __init__(self): |
||||
|
|
||||
# 目录提取拼接相关参数 |
# 目录提取拼接相关参数 |
||||
self.pantten_second_biaoti = '[2二ⅡⅠ][、.]\s{0,}?[\u4e00-\u9fa5]+' |
self.pantten_second_biaoti = '[2二ⅡⅠ][、.]\s{0,}?[\u4e00-\u9fa5]+' |
||||
self.pantten_other_biaoti = '[2-9二三四五六七八九ⅡⅢⅣⅤⅥⅦⅧⅨ][、.]\s{0,}?[\u4e00-\u9fa5]+' |
self.pantten_other_biaoti = '[2-9二三四五六七八九ⅡⅢⅣⅤⅥⅦⅧⅨ][、.]\s{0,}?[\u4e00-\u9fa5]+' |
||||
|
|
||||
# chatgpt 接口相关参数 |
# chatgpt 接口相关参数 |
||||
self.mulu_prompt = "请帮我根据题目为“{}”生成一个论文目录" |
self.mulu_prompt = "请帮我根据题目为“{}”生成一个论文目录" |
||||
self.first_title_prompt = "论文题目是“{}”,目录是“{}”,请把其中的大标题“{}”的内容补充完整,补充内容字数在100字左右" |
self.first_title_prompt = "论文题目是“{}”,目录是“{}”,请把其中的大标题“{}”的内容补充完整,补充内容字数在800字左右" |
||||
self.small_title_prompt = "论文题目是“{}”,目录是“{}”,请把其中的小标题“{}”的内容补充完整,补充内容字数在100字左右" |
self.small_title_prompt = "论文题目是“{}”,目录是“{}”,请把其中的小标题“{}”的内容补充完整,补充内容字数在800字左右" |
||||
self.references_prompt = "论文题目是“{}”,目录是“{}”,请为这篇论文生成15篇左右的参考文献,要求其中有有中文参考文献不低于12篇,英文参考文献不低于2篇" |
self.references_prompt = "论文题目是“{}”,目录是“{}”,请为这篇论文生成15篇左右的参考文献,要求其中有有中文参考文献不低于12篇,英文参考文献不低于2篇" |
||||
self.thank_prompt = "请以“{}”为题写一篇论文的致谢" |
self.thank_prompt = "请以“{}”为题写一篇论文的致谢" |
||||
self.kaitibaogao_prompt = "请以《{}》为题目生成研究的主要的内容、背景、目的、意义,要求不少于100字" |
self.kaitibaogao_prompt = "请以《{}》为题目生成研究的主要的内容、背景、目的、意义,要求不少于1500字" |
||||
self.chinese_abstract_prompt = "请以《{}》为题目生成论文摘要,要求生成的字数在100字左右" |
self.chinese_abstract_prompt = "请以《{}》为题目生成论文摘要,要求生成的字数在800字左右" |
||||
self.english_abstract_prompt = "请把“{}”这段文字翻译成英文" |
self.english_abstract_prompt = "请把“{}”这段文字翻译成英文" |
||||
self.chinese_keyword_prompt = "请为“{}”这段论文摘要生成3-5个关键字" |
self.chinese_keyword_prompt = "请为“{}”这段论文摘要生成3-5个关键字" |
||||
self.english_keyword_prompt = "请把“{}”这几个关键字翻译成英文" |
self.english_keyword_prompt = "请把“{}”这几个关键字翻译成英文" |
||||
self.dabiaoti = ["二", "三", "四", "五", "六", "七", "八", "九"] |
self.dabiaoti = ["二", "三", "四", "五", "六", "七", "八", "九"] |
||||
self.project_data_txt_path = "/home/majiahui/ChatGPT_Sever/new_data_txt" |
self.project_data_txt_path = "/home/majiahui/ChatGPT_Sever/new_data_txt" |
||||
self.openaikey_list = ["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", |
self.openaikey_list = ["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", |
||||
"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", |
"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", |
||||
"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" |
"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", |
||||
|
"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", |
||||
|
"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", |
||||
|
"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", |
||||
|
"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", |
||||
] |
] |
||||
# "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", |
|
||||
# "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" |
|
||||
# "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", |
|
||||
# "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", |
|
||||
# "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", |
|
||||
# "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" |
|
||||
|
|
||||
# 流程相关参数 |
# 流程相关参数 |
||||
self.thanks = "致谢" |
self.thanks = "致谢" |
||||
self.references = "参考文献" |
self.references = "参考文献" |
||||
|
|
||||
# flask port |
# flask port |
||||
self.flask_port = "14000" |
self.flask_port = "14002" |
||||
|
|
||||
# redis config |
# redis config |
||||
self.reids_ip = 'localhost' |
self.reids_ip = 'localhost' |
||||
self.reids_port = 63179 |
self.reids_port = 63179 |
||||
self.reids_db = 2 |
self.reids_db = 2 |
||||
self.reids_password='Zhicheng123*' |
self.reids_password = 'Zhicheng123*' |
||||
|
@ -0,0 +1,39 @@ |
|||||
|
|
||||
|
|
||||
|
class Config: |
||||
|
def __init__(self): |
||||
|
|
||||
|
# 目录提取拼接相关参数 |
||||
|
self.pantten_second_biaoti = '[2二ⅡⅠ][、.]\s{0,}?[\u4e00-\u9fa5]+' |
||||
|
self.pantten_other_biaoti = '[2-9二三四五六七八九ⅡⅢⅣⅤⅥⅦⅧⅨ][、.]\s{0,}?[\u4e00-\u9fa5]+' |
||||
|
|
||||
|
# chatgpt 接口相关参数 |
||||
|
self.mulu_prompt = "请帮我根据题目为“{}”生成一个论文目录" |
||||
|
self.first_title_prompt = "论文题目是“{}”,目录是“{}”,请把其中的大标题“{}”的内容补充完整,补充内容字数在100字左右" |
||||
|
self.small_title_prompt = "论文题目是“{}”,目录是“{}”,请把其中的小标题“{}”的内容补充完整,补充内容字数在100字左右" |
||||
|
self.references_prompt = "论文题目是“{}”,目录是“{}”,请为这篇论文生成15篇左右的参考文献,要求其中有有中文参考文献不低于12篇,英文参考文献不低于2篇" |
||||
|
self.thank_prompt = "请以“{}”为题写一篇论文的致谢" |
||||
|
self.kaitibaogao_prompt = "请以《{}》为题目生成研究的主要的内容、背景、目的、意义,要求不少于100字" |
||||
|
self.chinese_abstract_prompt = "请以《{}》为题目生成论文摘要,要求生成的字数在100字左右" |
||||
|
self.english_abstract_prompt = "请把“{}”这段文字翻译成英文" |
||||
|
self.chinese_keyword_prompt = "请为“{}”这段论文摘要生成3-5个关键字" |
||||
|
self.english_keyword_prompt = "请把“{}”这几个关键字翻译成英文" |
||||
|
self.dabiaoti = ["二", "三", "四", "五", "六", "七", "八", "九"] |
||||
|
self.project_data_txt_path = "/home/majiahui/ChatGPT_Sever/new_data_txt" |
||||
|
self.openaikey_list = [ |
||||
|
|
||||
|
] |
||||
|
|
||||
|
|
||||
|
# 流程相关参数 |
||||
|
self.thanks = "致谢" |
||||
|
self.references = "参考文献" |
||||
|
|
||||
|
# flask port |
||||
|
self.flask_port = "14000" |
||||
|
|
||||
|
# redis config |
||||
|
self.reids_ip = '104.244.89.190' |
||||
|
self.reids_port = 63179 |
||||
|
self.reids_db = 2 |
||||
|
self.reids_password='Zhicheng123*' |
Loading…
Reference in new issue